計算題2.
一個邊長為1的正立方體\(ABCD-EFGH\),點\(P\)為稜邊\(\overline{CG}\)的中點,點\(Q\)、\(R\)分別在稜邊\(\overline{BF}\)、\(\overline{DH}\)上,且\(A,Q,P,R\)為一平行四邊形的四個頂點,如下圖所示。今設定坐標系,使得\(D\)、\(A\)、\(C\)、\(H\)的坐標分別為\((0,0,0)\)、\((1,0,0)\)、\((0,1,0)\)、\((0,0,1)\),且\(\overline{BQ}=t\),試回答下列問題。
(1)試求點\(P\)的坐標。
(2)試求向量\(\vec{AR}\)(以\(t\)的式子來表示)。
(3)試證明四角錐\(G-AQPR\)的體積是一個定值(與\(t\)無關),並求此定值。
(4)當\(\displaystyle t=\frac{1}{4}\),求點\(G\)到平行四邊形\(AQPR\)所在平面的距離。
一個邊長為2的正立方體\(ABCD-EFGH\),點\(M\)為稜邊\(\overline{CG}\)的中點,點\(P\)和\(Q\)分別在稜邊\(\overline{BF}\)及\(\overline{DH}\)上,且\(A,P,M,Q\)為一平行四邊形的四個頂點,今設定坐標系,使得\(D,A,C,H\)的坐標分別為\((0,0,0),(2,0,0),(0,2,0)\)和\((0,0,2)\),試證四角錐\(G-APMQ\)的體積為\(\displaystyle \frac{4}{3}\)。
(109嘉義高中代理,
https://math.pro/db/thread-3369-1-1.html)
解法出自忠明高中 陳冠州老師,
https://www.ehanlin.com.tw/infos ... %95%B8%E7%94%B2.pdf