回復 5# beaglewu 的帖子
第6題
點\(P(-1,2)\)及雙曲線\(3x^2-4y^2=12\),若過\(P\)的直線與雙曲線交於相異兩點,求此直線的斜率\(m\)的範圍。
[解答]
#3 樓的想法應該是考慮漸近線,
而圖形的解法,應該考慮兩切線斜率 \( -1, \frac 73\),再看斜率在 \( (-\infty, -1), (-1, \frac73), (\frac73, \infty) \) 三段圖形的變化是幾個交點。
還要小心接近漸近線斜率時,其中一個交點往無窮遠跑。
省略一些計算,答案應為 \( -1 < m < -\frac{\sqrt{3}}{2} \) 或 \( -\frac{\sqrt{3}}{2} < m < \frac{\sqrt{3}}{2} \) 或 \( \frac{\sqrt{3}}{2} < m < \frac73 \)