回復 10# byron0729 的帖子
第12題
函數\(f(x)=x^3-9x^2+15x-7\)圖形的切線中,過點\(P(0,a)\)的恰有相異兩條,求\(a\)之值= 。
[解答]
過切點\(\left( t,{{t}^{3}}-9{{t}^{2}}+15t-7 \right)\)的切線為\(y-\left( {{t}^{3}}-9{{t}^{2}}+15t-7 \right)=\left( 3{{t}^{2}}-18t+15 \right)\left( x-t \right)\)
過 P(0,a)
\(\begin{align}
& a-\left( {{t}^{3}}-9{{t}^{2}}+15t-7 \right)=\left( 3{{t}^{2}}-18t+15 \right)\left( 0-t \right) \\
& a=-2{{t}^{3}}+9{{t}^{2}}-7 \\
\end{align}\)
恰有兩條相異切線,表示\(y=a\),和\(y=-2{{t}^{3}}+9{{t}^{2}}-7\)恰有兩交點
\(\begin{align}
& y'=-6{{t}^{2}}+18t=0 \\
& t=0\ or\ 3 \\
& a=-7\ or\ 20 \\
\end{align}\)