發新話題
打印

101桃園高中

回復 10# bugmens 的帖子

計算第 5 題:

\(\displaystyle\frac{36}{5\cdot7\cdot11}=\frac{a}{5}+\frac{b}{7}+\frac{c}{11}\)

\(\Rightarrow 36=a\cdot7\cdot11+b\cdot5\cdot11+c\cdot5\cdot7\)


\(1\equiv a\cdot2\pmod{5}\Rightarrow a\equiv3\pmod{5}\Rightarrow a=3\) 或 \(a=-2\)

\(1\equiv b\cdot6\pmod{7}\Rightarrow b\equiv6\pmod{7}\Rightarrow b=6\) 或 \(b=-1\)

\(3\equiv c\cdot2\pmod{11}\Rightarrow c\equiv7\pmod{11}\Rightarrow c=7\) 或 \(c=-4\)

因此僅有 \(2\times2\times2=8\) 種情況是有可能得,

再帶入 \(\displaystyle\frac{36}{5\cdot7\cdot11}=\frac{a}{5}+\frac{b}{7}+\frac{c}{11}\) 檢查看這八種中有多少種會成立,

可得正確的答案。

多喝水。

TOP

計算5:
如果是用bugmens的想法來做的話
36=77a+55b+35c-------(*)
a=-4, 55b+35c=344 ,(55,35)不整除344. 所以b,c沒有整數解
a=-3, 55b+35c=267 ,(55,35)不整除267. 所以b,c沒有整數解
a=-2, 55b+35c=140 ,(55,35)整除140. 所以b,c有整數解 =>再找解
a=-1, 55b+35c=113 ,(55,35)不整除113. 所以b,c沒有整數解
a=0,  55b+35c=36 ,(55,35)不整除36. 所以b,c沒有整數解
a=1, 55b+35c=-41 ,(55,35)不整除-41. 所以b,c沒有整數解
a=2, 55b+35c=-118 ,(55,35)不整除-118. 所以b,c沒有整數解
a=3, 55b+35c=-195 ,(55,35)整除195. 所以b,c有整數解=>再找解
a=4, 55b+35c=-272 ,(55,35)不整除-272. 所以b,c沒有整數解


[ 本帖最後由 Ellipse 於 2012-5-24 10:55 PM 編輯 ]

TOP

回復 11# weiye 的帖子

計算第 5 題:

另解,

\(36=77a+5(11b+7c)\)

解出通解 \(a=-2+5t, 11b+7c=38-77t\),其中 \(t\) 為整數,

因為 \(|a|<5\),所以 \(t=0\) 或 \(t=1\)

case i: 當 \(t=0\) 時,\(11b+7c=38\),解出通解 \(b=-1+7m, c=7-11m\),其中 \(m\) 為整數,

    因為 \(|b|<7\) 且 \(|c|<11\),所以 \(m=0\) 或 \(m=1\),可得 \((a,b,c)=(-2,-1,7)\) 或 \((-2,6,-4)\)

case Ii: 當 \(t=1\) 時,\(11b+7c=-39\),解出通解 \(b=-1+7m, c=-4-11m\),其中 \(m\) 為整數,

    因為 \(|b|<7\) 且 \(|c|<11\),所以 \(m=0\),可得 \((a,b,c)=(3,-1,-4)\)





>>>>>>>>>另外,順便來寫一下雙自由變數的通解,如下<<<<<<<<<<<<<<<<

\(36=77a+5(11b+7c)\)

先寫出 \((a,11b+7c)\) 的特解 \((-2,38)\),再寫通解 \(a=-2+5t, 11b+7c=38-77t\),其中 \(t\) 為整數,

再來考慮 \(11b+7c=38-77t\),

先寫出 \((b,c)\) 的特解 \((-1,7-11t)\),再寫通解 \(b=-1+7m, c=7-11t-11m\),其中 \(m\) 為整數。

因此, \((a,b,c)\) 整數解的通解為 \((a,b,c)=(-2+5t, -1+7m, 7-11t-11m)\),其中 \(t,m\) 為整數。

然後再依照本題的 \(|a|<5,|b|<7,|c|<11\),也可解得對應的 \(t,m\) 之值。

多喝水。

TOP

回復 10# bugmens 的帖子

週三,武陵高中也考了一題,不過問的非負整數...

題意經轉換後為:求最大之正整數 \( a \) 使得 \( 5n +12m =a \),  \( m,  n \) 無非負整數解

不過時間緊湊,也沒時間細想它...有空再來做
網頁方程式編輯 imatheq

TOP

填充八
因為\( x \ne 0 \)
假設\(\displaystyle \frac{y}{x}=t \)
再由\( x \ge y \ge 0 \)
得到\( 0 \le t \le 1 \)

\(\displaystyle \frac{5x+4y}{x+2y}=\frac{5+4t}{1+2t}=2+\frac{3}{1+2t} \)

所以得到\( M=5,m=3 \)
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

請問一下填充5如何解,謝謝

請問一下填充5如何解,謝謝

[ 本帖最後由 brace 於 2012-5-28 06:39 AM 編輯 ]

TOP

回復 16# brace 的帖子

填充第 5 題:

令 \(<a_n>\) 的公比為 \(a\),\(<b_n>\) 的公比為 \(b\),則

解 \(\displaystyle\left\{\begin{array}{cc}\displaystyle \frac{1}{1-a}+\frac{1}{1-b}=\frac{8}{3}\\ \frac{1}{1-ab}=\frac{4}{5}\end{array}\right.\),可得 \(\displaystyle(a,b)=(\frac{1}{2},-\frac{1}{2})\) 或 \(\displaystyle(-\frac{1}{2},\frac{1}{2})\)

因此,所求=\(\displaystyle\frac{1}{1-\left(\frac{1}{2}\right)^2}+2\cdot\frac{1}{1-\left(\frac{1}{2}\cdot\frac{-1}{2}\right)}+\frac{1}{1-\left(-\frac{1}{2}\right)^2}=\frac{64}{15}.\)

多喝水。

TOP

謝謝瑋岳老師

謝謝瑋岳老師,感謝您.^^

TOP

想請教填充第11題
如何從cos(A-B)=2/3
獲得跟邊長c有關的訊息??

TOP

引用:
原帖由 shiauy 於 2012-5-28 12:11 PM 發表
想請教填充第11題
如何從cos(A-B)=2/3
獲得跟邊長c有關的訊息??
我是這樣考慮,因為 BC>AC,在 BC 上取一點 D 使得 角DAC=角B
這樣的話三角形 ACD 與 三角形 BCA 相似, 令 AD=x, 則
4/6= x/AB = CD/4, 可解出 CD=8/3, AB=3x/2,
再因為 cos(A-B)=cos(角BAD)=2/3, BD=6-(8/3)=10/3, AD=x, AB=3x/2
可用餘弦定理解出x, 這樣邊長c就出來了。

TOP

發新話題