發新話題
打印

99 屏北高中

推到噗浪
推到臉書
引用:
原帖由 waitpub 於 2011-4-28 09:48 PM 發表
請問第六題:已知等腰三角形,若腰上的中線長為6。求三角形面積的最大值為何?
假設AB=AC
重心為G
那麼GB=GC=4
三角形GBC面積最大在角BGC=90度的時候,此時面積為(GBC)=8
(ABC)=3*(GBC)=24
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

同時間有三個人回文,解題還慢了一步,我還是補充資料就好了

6.已知等腰三角形,若腰上的中線長為6。求三角形面積的最大值為何?

若一等腰三角形的底邊上的高等於18cm,腰上的中線等於15cm。則這個等腰三角形的面積等於?
(初中數學競賽指導)

已知直角三角形的周長為\( 2+\sqrt{6} \),斜邊上的中線長為1,求這個三角形的面積?
雖然解題沒用到重心,但條件也有中線,故放在一起

101.1.10補充
有一個直角三角形,斜邊上的中線長為1,周長為\( 2+\sqrt{6} \),求此三角形的面積為?
(100卓蘭實驗高中,https://math.pro/db/thread-1165-1-1.html)

[ 本帖最後由 bugmens 於 2012-1-10 06:08 PM 編輯 ]

附件

初中數學競賽指導.gif (48.81 KB)

2011-4-28 22:18

初中數學競賽指導.gif

全國中學數學競賽題解.gif (35.3 KB)

2011-4-28 22:18

全國中學數學競賽題解.gif

TOP

國立屏北高級中學 99 學年度第一次教師甄選(清華原住民教育實驗專班)

第 6 題:已知等腰三角形,若腰上的中線長為 \(6\),求三角形面積的最大值為何?



解答:


設底邊長為 \(2a\),與底邊垂直之高長為 \(b\),


則腰長為 \(\sqrt{a^2+b^2}\),


由三角形的中線定理,可得 \(\displaystyle \left(\sqrt{a^2+b^2}\right)^2+(2a)^2=2\left(\left(\frac{\sqrt{a^2+b^2}}{2}\right)^2+6^2\right)\),


整理可得 \(9a^2+b^2=144\)(或是,如下圖,套用畢氏定理亦可得此式,感謝 bugmens 提供此想法。)




由算幾不等式,可得 \(\displaystyle \frac{9a^2+b^2}{2}\geq\sqrt{9a^2\cdot b^2}\Leftrightarrow 72\geq 3ab\Leftrightarrow 24\geq \frac{2a\cdot b}{2}\)


所以,此三角的最大面積為 \(24\)。(此時,\(a=2\sqrt{2}\),\(b=6\sqrt{2}\)。)

TOP

另外請教一下第三題,有想過要中線定理,也想利用ACE面積是ACD面積兩倍,然後用1/2absin去算,但就是算不出來!!

TOP

回復 24# waitpub 的帖子

國立屏北高級中學 99 學年度第一次教師甄選(清華原住民教育實驗專班)

第 3 題:如下圖, \(\triangle ABC,\, \angle C=90^\circ,\, \overline{AD}=\overline{DE}=\overline{EB},\, \angle ACD=\alpha,\, \angle DCE=\beta,\, \angle ECD=\gamma\),

       求 \(\displaystyle\frac{\sin\alpha\cdot\sin\gamma}{\sin\beta}=?\)




解答:

\(\displaystyle\frac{\sin\alpha\cdot\sin\gamma}{\sin\beta}\)


\(\displaystyle=\frac{1}{\displaystyle\frac{1}{2}\overline{AC}\cdot \overline{BC}}\cdot\frac{\displaystyle\frac{1}{2}\overline{CD}\cdot \overline{AC}\sin\alpha\cdot\frac{1}{2}\overline{CE}\cdot \overline{BC}\sin\gamma}{\displaystyle\frac{1}{2}\overline{CD}\cdot \overline{CE}\sin\beta}\)


\(\displaystyle=\frac{1}{\triangle ABC\mbox{面積}}\cdot\frac{\triangle ACD\mbox{面積}\cdot \triangle BCE\mbox{面積}}{\triangle CDE\mbox{面積}}\)


\(\displaystyle=\frac{1}{\triangle ABC\mbox{面積}}\cdot\frac{\displaystyle\frac{1}{3}\triangle ABC\mbox{面積}\cdot \frac{1}{3}\triangle ABC\mbox{面積}}{\displaystyle\frac{1}{3}\triangle ABC\mbox{面積}}\)


\(\displaystyle=\frac{1}{3}\)

TOP

謝謝老師們的解說!

TOP

請教各位老師填充第三題最小值已求出
Q點我自己算是(   (6-√3)/11, (2√3-1)/11    )
跟答案差很多~~不曉得是不是我算錯還是觀念有誤
謝謝!!

TOP

引用:
原帖由 weiye 於 2010-5-13 01:47 PM 發表


設 \( x,y,z \)為正實數,\( \displaystyle \left\{\ \matrix{9=x^2+y^2+xy \cr 16=y^2+z^2+yz \cr 25=z^2+x^2+zx }\right. \),求\( x+y+z= \)?

解答: ...
weiye大您好!!

謝謝您提供這麼好的方法!!
還想請教這邊P點(也就是費馬點)的實際座標,該如何下手?完全沒頭緒...

感謝回答~

想到了可以讓C點旋轉60度得D點座標
又因為B-P-D在同一條線上,所以可以做出P點的參數式
再利用向量PA、向量PB所夾120度可得P

但是這樣一來數字變的很複雜...有沒有其他的好方法呢?

[ 本帖最後由 icesnow1129 於 2011-5-19 04:05 PM 編輯 ]

TOP

回復 28# icesnow1129 的帖子

分別以 \(A, B\) 為中心,將 \(C\) 分別以逆時針、順時針旋轉 \(60^\circ\),

設旋轉後的兩點分別為 \(D\) 與 \(F\),

則 \(\overline{AF}\) 與 \(\overline{BD}\) 的交點即為 \(P\) 點。

TOP

第一題的解答打錯了,應該是3的立方根<x<27。

TOP

發新話題