發新話題
打印

99台中一中(部分題目)

我再貢獻幾題我有記下的題目,

並且把之前有人問的題目都放在一起,方便以後查詢:

※※ 題號接續上面的pdf 檔,非原始題號 ※※



第 4 題:(數據有改,方法相同)

若已知四面體四個面皆由全等的三角形構成 , 若此三角形三邊長為 \(17,16,10\),求四面體體積 = ?

https://math.pro/db/thread-927-1-1.html


第 6 題:(數據有改,方法相同)

\(\displaystyle \int^{\pi/2}_0\ln\left(\sin x\right)dx=\)?

https://math.pro/db/thread-926-1-1.html




第 8 題:

給定雙曲線 \(\displaystyle \Gamma:\, \frac{x^2}{36}-\frac{y^2}{20}=1\) 與直線 \(L:\, 3x+4y=k\),

若在 \(L\) 上存在唯一點 \(P\),使得過 \(P\) 點對雙曲線恰可做兩條互相垂直的切線,求 \(P\) 點坐標。





第 9 題:

\(\triangle ABC\) 中,\(\overline{AB}=1, \overline{BC}=\sqrt{3}, \overline{AC}=1\),設 \(P\) 為 \(\triangle ABC\) 內部的一點,

且 \(P\) 到三邊 \(\overline{BC}, \overline{AC}, \overline{AB}\) 之距離 \(\overline{PD}, \overline{PE}, \overline{PF}\) 的比為 \(1:2:3\),

若 \(\overline{AP}^2 : \overline{BP}^2 : \overline{CP}^2 = 1:a:b\),求數對 \((a,b)=\)?




第 10 題:已知 \(\overline{PA}, \overline{PB}, \overline{PC}\) 是圓 \(O\) 的三弦,\(∠ APB=\alpha, ∠ BPC=\beta\),

試證: \(\overline{PB}\sin\left(\alpha+\beta\right)=\overline{PC}\sin\alpha+\overline{PA}\sin\beta.\)




第 11 題:

若 \(2^n=a!+b!+c!\),其中 \(n,a,b,c\) 為正整數 , 且 \(a\geq b\) ,\(b\geq c\) 則 \((a,b,c,n)\) 有幾組解 ?

https://math.pro/db/thread-928-1-1.html



第 12 題:

在 \(2700\) 的正因數中 , 任取 \(3\) 個因數 \(a,b,c\),則 \(a\) 是 \(b\) 的因數,\(b\) 是 \(c\) 的因數之機率 = ?

https://math.pro/db/thread-925-1-1.html

多喝水。

TOP

第 6 題:

延續 https://math.pro/db/thread-926-1-1.html 的結果,

可得

\(\displaystyle\int^{\pi}_0\ln\left(\sin\left(x\right)\right)dx\)

\(\displaystyle=\int^{\pi/2}_0\ln\left(\sin\left(x\right)\right)dx+\int^{\pi}_{\pi/2}\ln\left(\sin\left(x\right)\right)dx\)

\(\displaystyle=2 \int^{\pi/2}_0\ln\left(\sin\left(x\right)\right)dx\)

\(\displaystyle=-\pi\ln2.\)

多喝水。

TOP

第 7 題:

先觀察得 \(\overline{DF}//\overline{AB}\),

然後由 \(\displaystyle \overline{DF} = \frac{2}{3}\overline{AB}\)

以及 \(\displaystyle \overline{DH}=\frac{1}{2}\overline{BG} = \frac{1}{2}\times\frac{1}{3}\overline{AB}\)

可得,\(\displaystyle \overline{DH}:\overline{DF} = \frac{\overline{AB}}{6}:\frac{2}{3}\overline{AB}=1:4\)

多喝水。

TOP

第 9 題:

\(\triangle ABC\) 中,\(\overline{AB}=1, \overline{BC}=\sqrt{3}, \overline{AC}=1\),設 \(P\) 為 \(\triangle ABC\) 內部的一點,

且 \(P\) 到三邊 \(\overline{BC}, \overline{AC}, \overline{AB}\) 之距離 \(\overline{PD}, \overline{PE}, \overline{PF}\) 的比為 \(1:2:3\),

若 \(\overline{AP}^2 : \overline{BP}^2 : \overline{CP}^2 = 1:a:b\),求數對 \((a,b)=\)?



以 \(P\) 為圓心,以 \(k,2k,3k\) 為半徑(其中 \(k\) 為任意正數)作同心圓,

在這三圓上分別取如上的三點 \(D, E, F\),

自 \(D,E,F\) 分別做三圓的切線,

三切線分別交於 \(A,B,C\) 三點,

當 \(E,F\) 兩點固定不動,而 \(D\) 點稍微移動

可見 \(\overline{PA}\) 固定不變,然 \(\overline{PB},\, \overline{PC}\) 比列卻不固定。


所以.......... 是我原始題目有抄錯,或是哪裡有想錯嗎?





還是......題目有說 \(\triangle ABC\) 是正三角形?

如果有說是正三角形的話,則

不失一般性,可設 \(P\) 為圓點,

\(\overleftrightarrow{BC}: y=-1\),

\(\overleftrightarrow{AC}:\) 斜率為 \(-\sqrt{3}\) 且距離原點為 \(2\) 的直線,取通過第一象限者,

\(\overleftrightarrow{AB}:\) 斜率為 \(\sqrt{3}\) 且距離原點為 \(3\) 的直線,取通過第二象限者,

找出三條直線方程式,解出交點 \(A,B, C\),

即可得 \(\overline{PA}^2:\overline{PB}^2:\overline{PC}^2.\) 之值.

多喝水。

TOP

引用:
原帖由 fortheone 於 2010-5-21 07:40 PM 發表
我猜想,您圖形中如果D點稍微移動,其實三個邊長就跟著改變了,就不是同一個三角形,應該不能當作反例。
就是兩個不同的三角形,卻都滿足題意 \(\overline{PD}: \overline{PE}: \overline{PF}=1:2:3\),

但兩個三角形的 \(PB^2: PC^2\) 非固定比例!

附件

99tcfsh_ex9.html (4.54 KB)

2010-5-21 20:01, 下載次數: 9460

多喝水。

TOP

引用:
原帖由 fortheone 於 2010-5-21 08:15 PM 發表
可是題目還有邊長的限制呀~
不一樣的邊長就會得到不一樣的比例,
我是這樣想的^^
對耶,我完全漏看 \(\overline{AB}=1, \overline{BC}=\sqrt{3}, \overline{AC}=1\) 這一句了,

真是眼拙!

那就 easy 了!!


因為將題目圖形放大或縮小,則所有長度的比例不便,

假設將圖形縮放為 \(\overline{PD}=1.\)

可設 \(P\) 為原點,

\(\overleftrightarrow{BC}: y=-1\),

\(\overleftrightarrow{AC}:\) 斜率為 \(-\frac{1}{\sqrt{3}}\) 且距離原點為 \(2\) 的直線,取通過第一象限者,

\(\overleftrightarrow{AB}:\) 斜率為 \(\frac{1}{\sqrt{3}}\) 且距離原點為 \(3\) 的直線,取通過第二象限者,

找出三條直線方程式,解出交點 \(A,B, C\),

即可得 \(\overline{PA}^2:\overline{PB}^2:\overline{PC}^2.\) 之值.

多喝水。

TOP

發新話題