# 測試

## 測試

abc 123 $$\sin\theta=\frac{\sqrt{3}}{2}$$  abc 123

abc 123 $\sin\theta=\frac{\sqrt{3}}{2}$  abc 123

abc 123 $\sin\theta=\frac{\sqrt{3}}{2}$ abc 123

abc 123 $$\sin\theta=\frac{\sqrt{3}}{2}$$ abc 123

$$( \alpha ^ \beta _ \gamma )$$

$$\overline{AB}$$

$$\displaystyle \cases{aX+bY=A \cr X+Y=I}$$   $$\cases{aX+bY=A \cr X+Y=I}$$

$$\displaystyle A=\Bigg[\; \matrix{1 & 4 \cr 3 & 2} \Bigg]\;$$

$$\displaystyle A=\Bigg[\; \matrix{ 2 \alpha^2 & \alpha^2 + \beta^2 - c^2 & \alpha^2 +\gamma^2 - b^2 \cr \alpha^2 +\beta^2 - c^2 & 2 \beta^2 & \beta^2 +\gamma^2 - a^2 \cr \alpha^2 +\gamma^2 - b^2 & \beta^2 +\gamma^2 - a^2 & 2 \gamma^2} \Bigg]\;$$

$$\displaystyle A=\Bigg|\; \matrix{ 1 & 2 \cr 3 & 4} \Bigg|\;$$

$$\displaystyle A=\Bigg|\; \matrix{ 2 \alpha^2 & \alpha^2 + \beta^2 - c^2 & \alpha^2 +\gamma^2 - b^2 \cr \alpha^2 +\beta^2 - c^2 & 2 \beta^2 & \beta^2 +\gamma^2 - a^2 \cr \alpha^2 +\gamma^2 - b^2 & \beta^2 +\gamma^2 - a^2 & 2 \gamma^2} \Bigg|\;$$

SIGMA
$$\displaystyle \Large\sum_{k=1}^{21} \left[ (43-2k)(2k-1) \right]=?$$

$$x \cdot y , x \times y$$

$$[(x-u)-(y-z)]^{40} - [(x-u)+(y-z)]^{40}$$

$$\neq$$ 不等於
$$a_{n+1}$$

$$\Bigg| x^2+x+1 \Bigg|$$
$$\overset { \rightharpoonup }{ AB }$$

[ 本帖最後由 cplee8tcfsh 於 2012-5-8 06:59 PM 編輯 ]

TOP

﻿