發新話題
打印

98慈大附中,臺南慈中

計算題第2題.

若有一組數據為 \(x_1,x_2,\cdots, x_n\),已知算數平均數 \(\overline{x}=0\),標準差 \(S=1\),若加入一個新數據 \(x_{n+1}\),求新的標準差為?
(標準差公式 \(\displaystyle S=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^n\left(x_i-\overline{x}\right)^2}\))

解:
\[S=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^n\left(x_i-\overline{x}\right)^2}=\sqrt{\frac{\sum\limits_{i=1}^{n}x_i^2}{n-1}-\frac{n}{n-1}\overline{x}^2}\]
\[\Rightarrow \sum\limits_{i=1}^{n}x_i^2 = \left(n-1\right)S^2 - n \overline{x}^2.\]

因此, \(\displaystyle \sum\limits_{i=1}^{n}x_i^2 = \left(n-1\right)\cdot1^2-n\cdot0=n-1\),  \(\Rightarrow \displaystyle\sum\limits_{i=1}^{n+1}x_i^2 = n+1 + x_{n+1}^2.\)

\[\mbox{新的標準差} = \sqrt{\frac{\sum\limits_{i=1}^{n+1}x_i^2}{n}-\frac{n-1}{n}\left(\frac{n\cdot 0+x_{n+1}}{n+1}\right)^2}\]
\[= \sqrt{\frac{n-1+x_{i+1}^2}{n}-\frac{n-1}{n}\left(\frac{x_{n+1}}{n+1}\right)^2}\]
\[= \sqrt{1-\frac{1}{n}+\frac{x_{n+1}^2}{n+1}}.\]

多喝水。

TOP

計算題第 8 題.

設 \(F(n)\) 表示整數 \(n\) 之各位數字中偶數的和,例如:\(F(1234)=2+4=6\),試問

\(F(1)+F(2)+\cdots+F(1000)\) 之值。

解:

\(F(1000)=0+0+0=0\),設某介於 \(1\) 至 \(999\) 的數字用十進位表示法為 \(A B C\),

出現在個位數字的的所有偶數只可能為 \(0,2,4,6,8\),

對所有個位數為偶數 \(C\) 的數字 \(ABC\),把 \(ABC\) 當中扣除 \(C\) 不寫,

剛好 \(AB\) 可以由 \(00\) 寫至 \(99\),共 \(100\) 組,

所以,由 \(1\) 寫至 \(999\) 時,出現在 \(C\) 位置的所有偶數和為 \((2+4+6+8)\cdot 100 = 2000\).



同理,由 \(1\) 寫至 \(999\) 時,出現在十位數字(\(B\) 位置)的所有偶數總和為 \((2+4+6+8)\cdot 100 = 2000\),

且由 \(1\) 寫至 \(999\) 時,出現在百位數字(\(A\) 位置)的所有偶數總和亦為 \((2+4+6+8)\cdot 100 = 2000\),



故,由 \(1\) 寫至 \(1000\) 時,所有書寫過的偶數的累加起來和為 \(2000+2000+2000 = 6000\).


Note:  \(0\) 有沒有累加都一樣,所以只算 \(2,4,6,8\) 的總和就好.

多喝水。

TOP

計算題第4題. 解:
先求出此拋物線上半葉與 \(x=n\) 的交點坐標為 \((n,\sqrt{n^2+1})\),

再求點 \((n, \sqrt{n^2+1})\)到此拋物線的漸近線 \(y-x=0\)的距離,得
\[ d_n = \frac{\left| \sqrt{n^2+1} -n \right|}{\sqrt{1^2+\left(-1\right)^2}} = \frac{( \sqrt{n^2+1} - n )(\sqrt{n^2+1} +n)}{\sqrt{2}(\sqrt{n^2+1} +n )} = \frac{1}{\sqrt{2}(\sqrt{n^2+1} +n )}\]

而得,

\[\lim\limits_{n\to\infty} n\cdot d_n = \lim\limits_{n\to\infty} \frac{n}{\sqrt{2}(\sqrt{n^2+1}+n)} = \lim\limits_{n\to\infty} \frac{1}{\sqrt{2}\left(\sqrt{1+\left(\frac{1}{n}\right)^2+1}\right)} = \frac{1}{2\sqrt{2}}\]



近似值為 \(0.35\).

多喝水。

TOP

證明題第1題.

試利用數學歸納法證明 \(\forall n\in N\),\(P^{2n}_{n}\) 恆為 \(2^n\) 的倍數,其中 \(\displaystyle P^n_m=\frac{n!}{m!},\,n,m\in N.\)

證明:

一、當 \(n=1\) 時,\(P^2_1=2\) 為 \(2^1\) 的倍數.

二、假設當 \(n=k,\,k\in N\) 時,\(P^{2k}_{k}=2^k\cdot m\),其中 \(m\) 為整數.

  則,當 \(n=k+1\) 時,

\[P^{2\left(k+1\right)}_{k+1}=\left(2k+2\right)\cdot\left(2k+1\right)\cdot 2k \cdots \left(k+2\right)\]
\[=2\cdot\left(2k+1\right)\cdot 2k \cdots \left(k+2\right)\left(k+1\right)\]
\[=2\cdot\left(2k+1\right)\cdot P^{2k}_{k}=2^{k+1}\cdot m\cdot\left(2k+1\right)\]

  亦為 \(2^{k+1}\) 的倍數.

由一、二,及數學歸納法原理,可得 \(\forall n\in N\),\(P^{2n}_{n}\) 恆為 \(2^n\) 的倍數.

多喝水。

TOP

發新話題