22 123
發新話題
打印

我的教甄準備之路 105.2.23更新

推到噗浪
推到臉書
矩陣\(n\)次方

這次嘗試將解答一併附上去,所以頁數較多(18頁)。

補充資料:
國立中正大學數學系◆余文卿 教授,【數學講座】方陣的冪次方及其應用
http://www.worldone.com.tw/pdFil ... /education_1736.pdf

105.4.26補充
設\( A=\left[ \matrix{1&1&1\cr0&1&1\cr0&0&1} \right] \),則\(A^{102}\)中各元總和為   
(105桃園高中,https://math.pro/db/thread-2489-1-1.html)

107.5.13補充
已知\( A=\left[ \matrix{1&0 \cr -1&2} \right] \),\( B=\left[ \matrix{0&0 \cr -1&1} \right] \),\( I=\left[ \matrix{1&0 \cr 0&1} \right] \),設\(A^8=aI+bB\),則\((a,b)\)之值為   
107全國高中聯招,https://math.pro/db/thread-2964-1-1.html

附件

矩陣n次方.zip (665.09 KB)

2016-2-23 08:03, 下載次數: 2556

TOP

當初這題的出處在
h ttp://forum.nta.org.tw/examservice/showthread.php?t=19254
之後在這篇又被問一次
h ttp://forum.nta.org.tw/examservice/showthread.php?t=48238
只是網址已經連不上,我將網頁放在附件中,有興趣的網友可以參考。

先說結論是題目打錯了,將\( \displaystyle \prod_{n=1}^{89}(1+nx^{3^{n}}) \)誤植為\( \displaystyle \prod_{n=1}^{89}(1+nx^{3n}) \)。

\( \displaystyle \prod_{n=1}^{89}(1+nx^{3n}) \)是整數分割。要求\(x^{267}\)的係數的話
\( 267=3\cdot 89=3(x_1+x_2+\ldots+x_n) \),其中\( 1 \le x_1<x_2<\ldots<x_n \)
但整數分割有很多種而且沒有規則
\( 267=3(1+88) \) , \( (1 \cdot x^3)(88 \cdot x^{264})=88 x^{267} \)
\( 267=3(1+2+86) \) , \( (1 \cdot x^3)(2 \cdot x^6)(86 \cdot x^{258})=172 x^{267} \)
\( 267=3(13+20+25+31) \) , \( (13 \cdot x^{39})(20 \cdot x^{60})(25 \cdot x^{75})(31 \cdot x^{93})=201500x^{267} \)

附件

當初的網頁.zip (111.59 KB)

2017-2-27 11:15, 下載次數: 1587

TOP

 22 123
發新話題