25 123
發新話題
打印

我的教甄準備之路 111.2.19更新

求數列一般項

之前在https://math.pro/db/viewthread.php?tid=680&page=2#pid2434推薦大家去看數學傳播關於遞迴數列的文章,相信大家對於分式遞迴數列應該都沒問題了。
但關於數列一般項的解法其實還有很多解法,只要題目條件調整一下說不定又可以用不同的解法。
我按照我的解題策略將這些題目做個整理,我也比較了各方法之間的異同。
當然還有很多題型我並沒有收錄,考量是教甄既然沒考到這麼難的題目,準備太多難免會顧此失彼。

superlori所整理的遞迴數列筆記
https://math.pro/db/viewthread.php?tid=680&page=2#pid7465
寸絲所整理的遞迴數列筆記(第一個檔案)
https://math.pro/db/viewthread.php?tid=680&page=2#pid7653
分式遞迴數列討論
https://math.pro/db/thread-1668-1-1.html

103.1.4補充
給定數列\( {x_n} \)如下:\( \displaystyle x_1=\frac{1}{2} \),\( x_n=3x_{n-1}-2(-1)^{n-1} \),\( n=2,3,... \)。試問\( x_{101} \)是幾位數?
(95高中數學能力競賽,https://math.pro/db/thread-1770-1-1.html)

已知\( a_1=1 \),\( \displaystyle a_{n+1}=3 a_n+\frac{3^n}{\sqrt{n}+\sqrt{n+1}} \),( \( n \in N \) );則\( a_n= \)?
(100麗山高中,https://math.pro/db/viewthread.php?tid=1138&page=7#pid9513)

從這兩題或許可以看出weiye的解題策略是遇到有指數的項就先同除。
而100麗山高中的\( a_n \)係數剛好也是3,除完之後\( \displaystyle \frac{a_{n+1}}{3^n} \)和\( \displaystyle \frac{a_n}{3^{n-1}} \)係數相同,就可以用累加的方式求得\( a_n \)。

出個問題讓妳回答,題目改成\( a_{n+1}=3a_{n}+n2^n \)
(1)若按照weiye的解題策略一開始就同除\( 2^n \),那有什麼地方應該要注意的?
(2)那可不可以同除n來計算?

103.4.26補充
設兩數列\( a_1,a_2, \ldots ,a_{100} \)及\( b_1,b_2, \ldots ,b_{100} \)滿足\( \displaystyle \cases{a_{n+1}=3a_n-2b_{n+1} \cr b_{n+1}=a_{n+1}-3b_n} \),\( n=1,2, \ldots ,99 \)。已知\( a_{99}=3^{50} \),\( b_{100}=4 \dots 3^{49} \)。試求\( \Bigg[\; \matrix{a_1 \cr b_1} \Bigg]\;= \)
(103中央大學附屬中壢高中,https://math.pro/db/thread-1868-1-1.html)

103.5.6補充
給定數列\( \langle\; a_n \rangle\; \),已知\( a_1=104 \),\( \displaystyle \sum_{k=1}^n a_k=(n+3)^2a_n \),試求\( a_{100}= \)?
(103和平高中,https://math.pro/db/thread-1877-1-1.html)

104.4.25補充
已知遞迴式\( a_1=1 \),\( a_{n+1}=2a_n+n^2 \),試求出\( a_n \)的一般項。
(104台南二中,https://math.pro/db/thread-2232-1-1.html)

105.4.23補充
若數列\( \{\;a_n \}\; \)滿足\( a_1=1 \),\( \sqrt{a_n}=2 \sqrt{a_{n+1}}+\sqrt{a_n a_{n+1}} \),\( n \in N \),求數列\( \{\;a_n \}\; \)的一般項\(a_n=\)   
(105中壢高中,https://math.pro/db/thread-2486-1-1.html)

105.4.24補充
\(n\)為自然數,若\( \displaystyle a_1=\frac{1}{2} \),\( a_{n+1}=2(a_n+1) \),求數列\(  \)的第100項\(a_{100}=\)   
(105台南女中,https://math.pro/db/thread-2488-1-1.html)

105.4.26補充
數列\(\langle\; a_n \rangle\;\)滿足\( a_1=0 \),\( a_2=1 \),\( a_{n+2}-2a_{n+1}+a_n=1 \),則\( a_{106}= \)   
(105桃園高中,https://math.pro/db/thread-2489-1-1.html)

105.6.5補充
數列\( \langle\; a_n \rangle\; \)中,若\(a_1=1\),且\(a_{n+1}=3a_n-1\),則\(a_n=\)   
(105高雄餐旅大學附屬高中,https://math.pro/db/thread-2527-1-1.html)

105.6.16補充
設數列\( \langle\; a_n \rangle\; \)滿足遞迴式\( \Bigg\{\; \matrix{\displaystyle a_1=\frac{1}{3} \cr a_n=a_{n-1}+\frac{2}{n^2+3n+2},n \ge 2} \),試求\(a_n\)。
(105復興高中二招,https://math.pro/db/viewthread.php?tid=2533&page=1#pid15698)

106.9.17補充
設數列\( \{\; a_n \}\; \)的前\(n\)項和為\(S_n\),已知\(a_1=1\)且\((5n-8)S_{n+1}-(5n+2)S_n=-20n-8\),試求\( \displaystyle \sum_{k=101}^{150}\frac{1}{a_ka_{k+1}} \)之值。
(104高中數學能力競賽,https://math.pro/db/viewthread.php?tid=2466&page=2#pid15693)

109.6.15補充
數列\(\langle\;a_n\rangle\;\)滿足\(a_1=1\)、\(\displaystyle a_{n+1}=\frac{1}{16}(1+4a_n+\sqrt{1+24a_n})\),求此數列的一般項\(a_n\)。
(109中科實中國中部,https://math.pro/db/thread-3347-1-1.html)
(111高雄女中,https://math.pro/db/thread-3624-1-1.html)

109.6.25補充
數列\(\langle\;a_n\rangle\;\)滿足\(a_1=1,a_{n+1}=1+a_n+\sqrt{1+4a_n}(n\ge 1)\),
而數列\(\langle\;b_n\rangle\;\)定義為\(b_n=\sqrt{1+4a_n}\)。
(1)問:數列\(\langle\;b_n\rangle\;\)為何種數列?
(2)求數列\(\langle\;a_n\rangle\;\)的一般項公式。
(105高中數學能力競賽 北一區(花蓮高中)筆試一試題,https://math.pro/db/thread-2608-1-1.html)

111.3.22補充
已知數列\(a_1=1\)且\(3a_{n+1}=5a_n+\sqrt{9+16a_n^2}\)
(a)求\(a_n\)的一般式。
(b)試證對於所有的正整數\(n\),滿足\(\displaystyle \sum_{i=1}^n \frac{1}{a_i}<\frac{3}{2}\)。
(110高中數學能力競賽新北市筆試一,https://math.pro/db/thread-3612-1-1.html)

109.8.10補充
數列\(\langle\;a_n \rangle\;\)滿足\(a_1=0\)且\(\displaystyle a_n=\frac{1}{2+a_{n-1}}\)(\(n\ge 2\))。已知將\(a_n\)寫成最簡分數\(\displaystyle a_n=\frac{r_n}{s_n}\)後,數列\(\langle\;a_n \rangle\;\)會滿足一個遞迴關係式\(r_n=ar_{n-1}+br_{n-2}\)(\(n\ge 2\))。試求數對\((a,b)=\)   
(105台灣師大申請入學,http://www.math.ntnu.edu.tw/admiss/recruit.php?Sn=14)

110.8.2補充
在數列\(\langle\;a_n\rangle\;\)中,當\(1\le n\le 5\)時,\(a_n=n^2\),且對所有正整數\(n\),\(a_{n+5}+a_{n+1}=a_{n+4}+a_n\)均成立,則\(a_{110}=\)?
(110竹東高中,https://math.pro/db/thread-3533-1-1.html)

111.4.19補充
已知數列\(\)的前\(n\)項和為\(S_n\),首項\(\displaystyle a_1=\frac{1}{4}\),且滿足\(a_n+3S_nS_{n-1}=0(n\ge 2,n\in N)\),則\(\displaystyle \frac{1}{S_{2022}}=\)   
(111台中一中,https://math.pro/db/viewthread.php?tid=3621&page=2#pid23766)

設一數列\(\langle a_n \rangle\)滿足\(a_1=1\),\(a_{n+1}>a_n(n\in N)\)且\((a_{n+1})^2+(a_n)^2+1=2(a_{n+1}\cdot a_n+a_{n+1}+a_n)\)。令\(\displaystyle S_n=\sum_{k=1}^n a_k\),試求\(\displaystyle \lim_{n\to \infty}\frac{S_n}{na_n}=\)   
(111台中一中,https://math.pro/db/viewthread.php?tid=3621&page=1#pid23757)

附件

求數列一般項.zip (547.9 KB)

2014-1-1 20:43, 下載次數: 6784

求遞推數列通項公式的十種策略例析.zip (144.76 KB)

2020-6-25 07:13, 下載次數: 2559

TOP

矩陣\(n\)次方

這次嘗試將解答一併附上去,所以頁數較多(18頁)。

補充資料:
國立中正大學數學系◆余文卿 教授,【數學講座】方陣的冪次方及其應用
h ttp://www.worldone.com.tw/pdFile.do?pid=1736&file=education/education_1736.pdf 連結已失效

105.4.26補充
設\( A=\left[ \matrix{1&1&1\cr0&1&1\cr0&0&1} \right] \),則\(A^{102}\)中各元總和為   
(105桃園高中,https://math.pro/db/thread-2489-1-1.html)

107.5.13補充
已知\( A=\left[ \matrix{1&0 \cr -1&2} \right] \),\( B=\left[ \matrix{0&0 \cr -1&1} \right] \),\( I=\left[ \matrix{1&0 \cr 0&1} \right] \),設\(A^8=aI+bB\),則\((a,b)\)之值為   
107全國高中聯招,https://math.pro/db/thread-2964-1-1.html

109.8.10補充
已知\(\displaystyle \frac{\pi}{8}<\theta<\frac{\pi}{4}\),\(\displaystyle sin(4\theta)=\frac{3}{5}\),且\(G=\left[\matrix{cos\theta&sin\theta \cr -sin\theta & cos\theta} \right]\),則\(G^8\)的反矩陣為何?
(104台灣師大個人申請,h ttp://www.math.ntnu.edu.tw/admiss/recruit.php?Sn=14 連結已失效)

給一個\(5\times 5\)的矩陣\(A=\left[\matrix{\displaystyle \frac{6}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{6}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{1}{5}&\frac{6}{5}&\frac{1}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{6}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{6}{5}} \right]\),且\(k\)為任意正整數,則\(A^k\)為   
(106台灣師大申請入學,h ttp://www.math.ntnu.edu.tw/admiss/recruit.php?Sn=14 連結已失效)

若\(\left[ \matrix{1&3 \cr 0&2}\right]^n=\left[\matrix{a_n& b_n \cr c_n&d_n} \right]\),其中\(n\)為正整數,則\(\displaystyle \frac{b_{18}}{b_9}\)之值為   
(2020TRML個人賽,https://math.pro/db/thread-3381-1-1.html)

110.1.23補充
設兩矩陣\(P,Q\)滿足\(\cases{7P+8Q=A \cr P+Q=I_2}\),其中\(A=\left[\matrix{11&-3 \cr 4&4} \right]\),\(I_2=\left[ \matrix{0&0 \cr 0&0}\right]\),若\(A^{21}=aP+bQ\),求\((a,b)\)。
(1082中山大學雙週一題第4題,http://www.math.nsysu.edu.tw/~problem/2020s/1082Q&A.htm)

110.1.31補充
\(n\in N\),\(\left[\matrix{3&0 \cr 2&1}\right]^n=\left[\matrix{a_n&b_n \cr c_n&d_n} \right]\),下列敘述何者正確?
(a)\(a_3=9\) (b)\(a_2+a_3=a_4\) (c)\(a_4+b_4=c_4+d_4\) (d)\(c_n+d_n=3\)
https://math.pro/db/thread-3398-1-1.html

110.5.5補充
矩陣\(A=\left[\matrix{cos\theta&sin\theta \cr sin\theta&-cos\theta} \right]\),求\(\displaystyle \sum_{n=1}^{100}A^n\)。
(108基隆女中,https://math.pro/db/viewthread.php?tid=3186&page=3#pid20435)

110.8.14補充
若\(\left[\matrix{-1&\sqrt{3}\cr -\sqrt{3}&-1}\right]^{100}=\left[\matrix{a&b\cr c&d}\right]\),則\(\displaystyle log_2 \frac{bc-ad}{a+b+c+d}=\)   
(2012TRML團體賽,https://math.pro/db/thread-1486-1-1.html)

111.4.2補充
若\(\left[\matrix{-\sqrt{3}&1\cr -1&-\sqrt{3}} \right]^{99}=\left[\matrix{a&b\cr c&d}\right]\),則\(\displaystyle log_4 \frac{ad-bc}{a+b-c-d}=\)?
(111樟樹實創高中,https://math.pro/db/thread-3617-1-1.html)

設矩陣\(A=\left[\matrix{3&3&3 \cr 3&3&3 \cr3&3&3} \right]\),矩陣\(I=\left[\matrix{1&0&0 \cr 0&1&0 \cr 0&0&1} \right]\),若\((A+I)^4=xA+yI\),其中\(x,y\)為兩定實數,則\(x+y=\)   
(98嘉義高工,https://math.pro/db/thread-1031-1-1.html)
--------------------------------
110.7.25補充
特徵值重根時該怎麼辦?
THE JORDAN CANONICAL FORM
https://math.pro/db/attachment.p ... 87&t=1407797768
maxima範例程式
https://math.pro/db/viewthread.php?tid=709&page=2#pid2620

\(A=\left[\matrix{-1&-9 \cr 1&-7}\right]\),\(A=PDP^{-1}\),且\(P=\left[\matrix{3&1\cr1&0}\right]\),求\(A^n=\)   (答案以\(n\)表示,\(n\in N\))?
(101松山工農,https://math.pro/db/viewthread.php?tid=1482&page=1#pid8184)

111.7.7補充
設矩陣\(A=\left(\matrix{0&-1 \cr 1&2}\right)\),若\(A^{111}=\left(\matrix{a&b \cr c&d}\right)\),則\(a+c+d=\)?
(A)110 (B)111 (C)112 (D)113
(111台中市國中聯招,https://math.pro/db/thread-3661-1-1.html)

設矩陣\(A=\left[\matrix{-5&-4\cr 9&7}\right]\),則\(A^{51}-A^{50}+A^3-3A^2-2A+4I_2\)為下列何者?(\(I_2=\left[\matrix{1&0\cr0&1} \right]\))
(A)\(\left[\matrix{24&16\cr-36&-24} \right]\) (B)\(\left[\matrix{-24&-16\cr36&24} \right]\) (C)\(O_2\) (D)\(4I_2\)
(110全國高中聯招,https://math.pro/db/thread-3530-1-1.html)

附件

矩陣n次方.zip (665.09 KB)

2016-2-23 08:03, 下載次數: 5439

TOP

當初這題的出處在
h ttp://forum.nta.org.tw/examservice/showthread.php?t=19254
之後在這篇又被問一次
h ttp://forum.nta.org.tw/examservice/showthread.php?t=48238
只是網址已經連不上,我將網頁放在附件中,有興趣的網友可以參考。

先說結論是題目打錯了,將\( \displaystyle \prod_{n=1}^{89}(1+nx^{3^{n}}) \)誤植為\( \displaystyle \prod_{n=1}^{89}(1+nx^{3n}) \)。

\( \displaystyle \prod_{n=1}^{89}(1+nx^{3n}) \)是整數分割。要求\(x^{267}\)的係數的話
\( 267=3\cdot 89=3(x_1+x_2+\ldots+x_n) \),其中\( 1 \le x_1<x_2<\ldots<x_n \)
但整數分割有很多種而且沒有規則
\( 267=3(1+88) \) , \( (1 \cdot x^3)(88 \cdot x^{264})=88 x^{267} \)
\( 267=3(1+2+86) \) , \( (1 \cdot x^3)(2 \cdot x^6)(86 \cdot x^{258})=172 x^{267} \)
\( 267=3(13+20+25+31) \) , \( (13 \cdot x^{39})(20 \cdot x^{60})(25 \cdot x^{75})(31 \cdot x^{93})=201500x^{267} \)

附件

當初的網頁.zip (111.59 KB)

2017-2-27 11:15, 下載次數: 3893

TOP

兩根號的極值問題

110.2.20補充
若\(-3\le x\le 1\),試求\(f(x)=\sqrt{x+3}+\sqrt{1-x}\)的值域。
(109嘉義高中代理,https://math.pro/db/thread-3369-1-1.html)

設\(F_1(-4,0),F_2(4,0)\)為橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)的兩焦點,且\(A(2,2)\)在橢圓的內部。若\(P\)為橢圓上任意一點,證明\(10-2\sqrt{2}\le \overline{PA}+\overline{PF_1}\le 10+2\sqrt{2}\)。
(95高中數學能力競賽 嘉義區複賽試題一)

求函數\(f(x)=\sqrt{2x^2-6x+4}+\sqrt{x^2-3x}\)的最小值,及此時的\(x\)之值。
(建中通訊解題第132期)

已知\(-1\le x \le 1\),\(\displaystyle y=\sqrt{4+\sqrt{3+\sqrt{1+x}}}+\sqrt{4+\sqrt{3+\sqrt{1-x}}}\),求\(y\)的最大值在哪兩個連續整數之間?
(建中通訊解題第146期)

設\(x,y\)為兩實數且滿足\(\sqrt{x+3}+\sqrt{y-7}=6\),若\(2x+y\)的最大值為\(M\),最小值為\(m\),求數對\(M,m\)。
(建中通訊解題第154期)

111.1.31
設\(x\in R\),求\(f(x)=\sqrt{x^4-3x^2-6x+13}-\sqrt{x^4-x^2+1}\)的最大值為   
(104全國高中聯招,https://math.pro/db/thread-2252-1-1.html)

附件

兩根號的極值問題.zip (657.67 KB)

2021-2-9 14:51, 下載次數: 1797

TOP

111.3.9補充
若\(\displaystyle \lim_{n\to \infty}\frac{(1^2+2^2+\ldots+n^2)(1^5+2^5+\ldots+n^5)}{(1^3+2^3+\ldots+n^3)(1^4+2^4+\ldots+n^4)}=\frac{b}{a}\)(\(a,b\)為整數,且\(\displaystyle \frac{b}{a}\)為一最簡分數),則\(a+b=\)?
(A)37 (B)29 (C)22 (D)19。
(101全國高中聯招,https://math.pro/db/viewthread.php?tid=1385&page=1#pid6029)

111.4.2補充
已知數列\(\langle\;a_n\rangle\;\)中,若\(\displaystyle a_n=\frac{3}{\sqrt{n^4+4n^2}}+\frac{6}{\sqrt{n^4+16n^2}}+\frac{9}{\sqrt{n^4+36n^2}}+\ldots+\frac{3n}{\sqrt{5n^4}}\),則\(\displaystyle \lim_{n\to \infty}a_n=\)?
(111樟樹實創高中,https://math.pro/db/thread-3617-1-1.html)

111.5.6補充
求極限\(\displaystyle \lim_{n\to \infty}\frac{(\sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{n})^2(1^3+2^3+3^3+\ldots+n^3)}{(\root 3\of 1+\root 3\of 2+\root 3\of 3+\ldots+\root 3\of n)^3(1^2+2^2+3^2+\ldots+n^2)}\)之值為   
(111台南一中,https://math.pro/db/thread-3635-1-1.html)

111.6.11補充
求\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{k^6-k(k-1)^5}{n^6}=\)   
(104師大附中,https://math.pro/db/viewthread.php?tid=2226&page=1#pid13007)

111.6.12補充
試問\(\displaystyle \lim_{n\to \infty}\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\ldots+\frac{1}{\sqrt{n}}\right)=\)?
(A)0 (B)1 (C)2 (D)3 (E)4
(111香山高中,https://math.pro/db/thread-3654-1-1.html)

111.6.18
\(\displaystyle \lim_{n\to \infty} \frac{1}{n^6}\sum_{k=1}^n [(n^2+nk+k^2)(n+k)^3]=\)   
(111台中女中,https://math.pro/db/thread-3656-1-1.html)

111.7.7
極限值\(\displaystyle \lim_{n\to \infty}\sum_{k=0}^n \left(\frac{k}{n}\right)^4\)為
(A)\(\displaystyle \frac{1}{2}\) (B)\(\displaystyle \frac{1}{3}\) (C)\(\displaystyle \frac{1}{4}\) (D)\(\displaystyle \frac{1}{5}\)
(111台中市國中聯招,https://math.pro/db/thread-3661-1-1.html)

附件

黎曼和和夾擠定理.zip (514.67 KB)

2022-2-20 16:48, 下載次數: 549

TOP

 25 123
發新話題