發新話題
打印

111嘉義高中

本主題由 bugmens 於 2023-10-14 04:44 合併
引用:
原帖由 s7908155 於 2022-4-25 10:56 發表
請教最後一題的想法是同乘1-p移位消去嗎?  

解到一半生不出來,還是有其他想法呢?
考場時是這樣解,不過再搭配幾何分布,有些東西就不用算這麼久
X為幾何分布(試驗成功機率為p)的隨機變數

\(\displaystyle E(X)=\sum^\infty_{n=1}n(1-p)^{n-1}p=\frac{1}{p}\),\(\displaystyle E(X^2)=\sum^\infty_{n=1}n^2(1-p)^{n-1}p=Var(X)+(E(X))^2=\frac{2-p}{p^2}\)

設\(\displaystyle S=\sum^\infty_{n=1}n^3(1-p)^{n-1}p\)

則\(\displaystyle (1-p)S=\sum^\infty_{n=1}n^3(1-p)^{n}p=\sum^\infty_{t=2}(t-1)^3(1-p)^{t-1}p=\sum^\infty_{t=1}(t-1)^3(1-p)^{t-1}p=\sum^\infty_{n=1}(n-1)^3(1-p)^{n-1}p\)

所以\(\displaystyle pS=S-(1-p)S=\sum^\infty_{n=1}(n^3-(n-1)^3)(1-p)^{n-1}p=\sum^\infty_{n=1}(3n^2-3n+1)(1-p)^{n-1}p=3E(X^2)-3E(X)+1\)


所以\(\displaystyle S=\frac{1}{p}\frac{6-3p-3p+p^2}{p^2}=\frac{p^2-6p-6}{p^3}\)

想法是從\(\displaystyle \sum^\infty_{n=1}n^3(1-p)^{n-1}p=E(X^3)\)想到要用幾何分布的資訊去推的

說來慚愧,考試時忘了幾何分布的變異數,所以考場當時只能全部重推,結果太緊張仍推錯了

TOP

發新話題