發新話題
打印

111高雄中學

回復 17# satsuki931000 的帖子

第 16 題
p(x) = 0 的二根為 - a ± √(a^2 + b + 1)
q(x) = 0 的二根為 - b ± √(b^2 + a + 4)

a^2 + b + 1 和 b^2 + a + 4 均為完全平方數
接下來分成
(1) a = b (2) a > b (3) a < b 去討論,用夾的

答案是 (a,b) = (0,0) 或 (1,2)

TOP

回復 16# satsuki931000 的帖子

第15題
\(\begin{align}
  & \frac{n{{H}_{n+1}}}{n{{H}_{n}}}<\frac{{{H}_{n+1}}+{{H}_{n+2}}+\cdots +{{H}_{2n}}}{n{{H}_{n}}}<\frac{n{{H}_{2n}}}{n{{H}_{n}}} \\
& 1+\frac{\frac{1}{n+1}}{{{H}_{n}}}<\frac{{{H}_{n+1}}+{{H}_{n+2}}+\cdots +{{H}_{2n}}}{n{{H}_{n}}}<1+\frac{\frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{2n}}{{{H}_{n}}} \\
& \underset{n\to \infty }{\mathop{\lim }}\,\left( 1+\frac{\frac{1}{n+1}}{{{H}_{n}}} \right)=1+\frac{0}{\infty }=1 \\
& \underset{n\to \infty }{\mathop{\lim }}\,\left( 1+\frac{\frac{1}{n+1}+\frac{1}{n+2}+\cdots +\frac{1}{2n}}{{{H}_{n}}} \right)=1+\frac{\ln 2}{\infty }=1 \\
& \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{H}_{n+1}}+{{H}_{n+2}}+\cdots +{{H}_{2n}}}{n{{H}_{n}}}=1 \\
\end{align}\)

TOP

回復 28# zerogil159 的帖子

\(\begin{align}
  & {{a}^{2}}+b+1={{m}^{2}} \\
& {{b}^{2}}+a+4={{n}^{2}} \\
&  \\
& \left( 1 \right)a=b \\
& {{n}^{2}}-{{m}^{2}}=3 \\
& \left( n+m \right)\left( n-m \right)=3\times 1 \\
& n=2,m=1 \\
& {{a}^{2}}+a=0 \\
& a=b=0 \\
&  \\
& \left( 2 \right)a>b \\
& {{a}^{2}}<{{a}^{2}}+b+1<{{a}^{2}}+2a+1={{\left( a+1 \right)}^{2}} \\
\end{align}\)
無解

\(\begin{align}
  & \left( 3 \right)a<b \\
& {{b}^{2}}<{{b}^{2}}+a+4<{{b}^{2}}+4b+4={{\left( b+2 \right)}^{2}} \\
& {{b}^{2}}+a+4={{\left( b+1 \right)}^{2}} \\
& a=2b-3<b \\
& a<b<3 \\
\end{align}\)
再檢驗\(\left( a,b \right)=\left( 0,1 \right),\left( 0,2 \right),\left( 1,2 \right)\)即可

[ 本帖最後由 thepiano 於 2022-4-12 13:21 編輯 ]

TOP

回復 40# anyway13 的帖子

m < (-14 - 10√7) / 21 或 m > (-14 + 10√7) / 21

TOP

發新話題