發新話題
打印

110高雄女中

推到噗浪
推到臉書

回復 4# koeagle 的帖子

第 2 題.
對任意實數 \( x, y \),由柯西不等式得
\( (x^{2}+(\sqrt{3})^{2})((\sqrt{3})^{2}+y^{2})\geq(\sqrt{3}x+\sqrt{3}y)^{2}=3(x+y)^{2} \)

將 \( (x,y)=(a,b),(b,c),(c,d),(d,a) \) 分別代入上式,並相乘得

\( \left[(a^{2}+3)(b^{2}+3)(c^{2}+3)(d^{2}+3)\right]^{2}\geq81\left[(a+b)(b+c)(c+d)(d+a)\right]^{2} \)

\( \Rightarrow(a^{2}+3)(b^{2}+3)(c^{2}+3)(d^{2}+3)\geq9\left|(a+b)(b+c)(c+d)(d+a)\right|\geq9(a+b)(b+c)(c+d)(d+a) \)
網頁方程式編輯 imatheq

TOP

回復 6# satsuki931000 的帖子

第 8 題. 用 \( tan \) 之值,配合圖形會比較快

如果有畫圖的畫,會知,在三角形在 \( L_1 \) 上的兩頂點所在的內角皆為銳角



並作 \( L_1 \) 上的高,直接用兩個正切值就可以得到高的長度及面積了

所求面積 \( =\frac{1}{2}\cdot 90\cdot\left(90\cdot\frac{7}{30}\right)=945 \)
(利用斜率及差角公式可求得圖中 \( \tan A = \frac{7}{19}, \tan B = \frac{7}{11} \) )

[ 本帖最後由 tsusy 於 2021-4-17 18:48 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 14# liuandy 的帖子

第 5 題,也算常見的考古題了
1. 設過原點 \( (0,0) \) 有三條相異直線與 \( f(x)=x^{3}+kx^{2}+1 \) 相切,則實數 \( k \) 值的範圍為 __________。(100楊梅高中、99台中二中、102復興高中)

2. 三次曲線\(y=x^3+ax^2+1\),若通過原點可做出此曲線的三條相異切線,求實數\(a\)的範圍為。(107中科實中國中部)

3. 三次曲線 \( y=x^{3}+ax^{2}+x+1 \),若由原點可作三條相異之切線,試求實數 \( a \) 的範圍。(101中科實中、96台中一中)
瑋岳老師的解答:https://math.pro/db/viewthread.php?tid=1318&page=5#pid5091

4. \( a\in\mathbb{R} \),過 \( P(a,2) \) 作 \( y=f(x)=x^{3}-3x^{2}+2 \) 的切線,若所作的切線恰有一條,求 \( a \) 的範圍。(97大里高中)

5. 三次曲線 \( y=x^{3}+kx^{2}+x+1 \),若由原點恰可作兩條切線,試求實數 \( k \) 範圍。(102松山家商)

6. 已知函數圖形 \( \Gamma:\,f(x)=x^{3}-x \),而點 \( P(a,0) \) 是圖形外一點,若過 \( P \) 恰可作相異三條的切線,則 \( a \) 的範圍為 \( \underline{\qquad\qquad} \)。(102北門高中)

7. 平面上動點 \( P(a,b) \),已知通過點 P 對函數 \( f(x) = -x^3 + 2x + 3 \) 圖形可做三條切線,找出符合的關係式。(106高雄女中)

[ 本帖最後由 tsusy 於 2021-4-18 11:15 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 14# liuandy 的帖子

第 3 題
依正射影公式可計算 \( (x',y') \)
\( \left(\frac{(x,y)\cdot(a,b)}{a^{2}+b^{2}}\right)(a,b)=\left(\frac{a^{2}x+aby}{a^{2}+b^{2}},\frac{abx+b^{2}y}{a^{2}+b^{2}}\right) \)

因此線性變換 \( T \) 的表示矩陣為 \( \frac{1}{a^{2}+b^{2}}\begin{bmatrix}a^{2} & ab\\
ab & b^{2}
\end{bmatrix} \)
網頁方程式編輯 imatheq

TOP

回復 19# jasonmv6124 的帖子

第 7 題,算得有點醜,如有錯誤,還請指正

令 \( \overline{SP}=2x, \overline{SR}=y,則 (\sqrt{3}x+y)^{2}+x^{2}=6^{2} \Rightarrow4x^{2}+y^{2}+2\sqrt{3}xy=36 \)。

而圓柱側面積為 \( 2xy \)。

由算幾不等式有 \( \frac{4x^{2}+y^{2}}{2}\geq\sqrt{4x^{2}y^{2}}=2xy \Rightarrow(4+2\sqrt{3})xy\leq36 \Rightarrow xy\leq36-18\sqrt{3} \)

因此可得 \( y=2x \) 時,圓柱有最大側面積,此時 \( x = \frac{3}{2}(\sqrt{6}-\sqrt{2}) \)

而此圓柱的體積為 \( \pi(\frac{2x}{2\pi})^{2}y=\frac{2x^{3}}{\pi}=\frac{81\sqrt{6}-135\sqrt{2}}{\pi} \)

[ 本帖最後由 tsusy 於 2021-4-20 20:48 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 36# math1 的帖子

只能自己算,然後找人對答案
1. 0
2. 見 https://math.pro/db/viewthread.php?tid=3501&page=1#pid22473
3. \( \frac{1}{a^{2}+b^{2}}\begin{bmatrix}a^{2} & ab\\
ab & b^{2}
\end{bmatrix} \)
4. \( \frac{3}{5} \)
5. 4
6. \( \frac{5}{3}\pi \)
7. \( \frac{81\sqrt{6}-135\sqrt{2}}{\pi} \)
8. 945
9. \( (3\sqrt{2},1-6\sqrt{2}), (-\sqrt{2},1-2\sqrt{2}), (\sqrt{2},1+2\sqrt{2}), (3\sqrt{2},1+6\sqrt{2}) \)
10. 3432 (或另一種解讀 2490)
11. 2040
12. 59640
網頁方程式編輯 imatheq

TOP

回復 42# jeanvictor 的帖子

30# farmer 老師所提,只關心對戰方式,不關心對戰結果
https://math.pro/db/viewthread.php?tid=3501&page=3#pid22512

兩種並列的原因是因為此份試題為考生記憶版,無法確定原題之敘述
網頁方程式編輯 imatheq

TOP

回復 44# jeanvictor 的帖子

找一下當初算的,只留下一個答案...
看起來最大可能就是我算錯了
網頁方程式編輯 imatheq

TOP

發新話題