發新話題
打印

110新竹高中

推到噗浪
推到臉書
計算1另解

附件

計1.jpg (100.73 KB)

2021-4-11 19:17

計1.jpg

TOP

想請教填充1,謝謝。

TOP

回復 42# koeagle 的帖子

填充第 1 題

六對同義:1 種
五對同義:0 種
四對同義,二組不同義:C(6,4) * 2 = 30 種
三對同義,三組不同義:C(6,3) * 8 = 160 種
二對同義,四組不同義:C(6,2) * 60 = 900 種

總共 1091 種

TOP

回復 43# thepiano 的帖子

謝謝 thepiano 老師。
謝謝 czk0622 老師。

[ 本帖最後由 koeagle 於 2021-4-11 21:49 編輯 ]

TOP

回復 42# koeagle 的帖子

填充第 1 題
反面作法(取捨原理)
任意分組-全不同義-恰1組同義\(=10395-6040-3264=1091\)
任意分組:\(\Pi^{6}_{k=1}{C^{2k}_{2}}/6!=10395\)
全不同義:\(\Pi^{6}_{k=1}{C^{2k}_{2}}/6!-C^{6}_{1}\Pi^{5}_{k=1}{C^{2k}_{2}}/5!+C^{6}_{2}\Pi^{4}_{k=1}{C^{2k}_{2}}/4!-C^{6}_{3}\Pi^{3}_{k=1}{C^{2k}_{2}}/3!+C^{6}_{4}\Pi^{2}_{k=1}{C^{2k}_{2}}/2!-C^{6}_{5}\Pi^{1}_{k=1}{C^{2k}_{2}}/1!+C^{6}_{6}=6040\)
恰1組同義:\(C^{6}_{1}(\Pi^{5}_{k=1}{C^{2k}_{2}}/5!-C^{5}_{1}\Pi^{4}_{k=1}{C^{2k}_{2}}/4!+C^{5}_{2}\Pi^{3}_{k=1}{C^{2k}_{2}}/3!-C^{5}_{3}\Pi^{2}_{k=1}{C^{2k}_{2}}/2!+C^{5}_{4}\Pi^{1}_{k=1}{C^{2k}_{2}}/1!-C^{5}_{5})=6\times 544=3264\)

看著手稿還打錯,謝謝thepiano老師修正

[ 本帖最後由 czk0622 於 2021-4-11 22:44 編輯 ]

TOP

回復 43# thepiano 的帖子

鋼琴老師您好

可否問一下當兩組同義時  C(6,2)X60  ,60是怎麼得到的呢?

同樣的問題四組同義時   C(6,4)X2   , 2是怎麼得到的呢?
不知道這樣理解有錯嗎?   
A        B        C        D        E        F
a        b        c        d        f        e
最後兩組不同義的配對只能是E配f  ,F配e這一組(only這組??_).  不知道是哪作錯了?

TOP

回復 47# anyway13 的帖子

ABCDEF
abcdef
C(6,4)—>Aa Bb Cc Dd
E  e固定 與F  f有2! 排列

同理
C(6,2)—>Aa Bb
CDEF    cdef討論(可以樹狀圖畫一下蠻清楚的)
針對CD Cd CE Ce CF Cf討論
CD—>cd  cE  ce  cF  cf—>每種剩下2!排列
故為6*5*2=60

TOP

回復 47# anyway13 的帖子

2不同=2亂排-0不同=4!/(2!2!2!)-1=2
3不同=3亂排-2不同-0不同=6!/(2!2!2!3!)-3*2--1=8
4不同=4亂排-3不同-2不同-0不同=8!/(2!2!2!2!4!)-4*8-6*2-1=60

TOP

回復 46# anyway13 的帖子

老師應該是把
E---F
f----e     即為(Ef)(Fe)
視為一種錯排列的問題吧
但其實這題不是單純錯排喔
它也可以是
E----e
F----f    即為(EF)(ef)
亦為不同義
所以有2種,至於2種的算法就如上老師們的各種算法了
希望有解答到你的問題

TOP

回復 46# anyway13 的帖子

小弟一開始也以為題意是一個大寫字母配一個小寫字母成一組,所以也用錯排做了一遍
後來看到題目的舉例才發現原來是任意配

TOP

發新話題