發新話題
打印

109 建國中學代理

推到噗浪
推到臉書

回復 3# satsuki931000 的帖子

TOP

回復 5# satsuki931000 的帖子

根本的原因在足碼的限定範圍:
你的推導式中足碼最低階者為 S_(n-1) , 因為 n-1≥1 , 所以 n≥2
因此你導出的 a_(n+1)=3a_n 只在 n≥2 成立,
但 n=1 , 即 a_2=3*a_1 則未必成立.

TOP

回復 3# satsuki931000 的帖子

13.

TOP

回復 9# mathca 的帖子

填充4
以N表麵,R表飯,題目的5種餐點依序表為 N1, N2, N3, R1, R2
R→另4種
N→R (前一天為麵,則當天必為飯) , 因此N後必為R, 7/6是N3, 7/7必定是R
7/7~7/10只有兩種情況:
P( R N R N3 ) = P(R→N)*P(N→R)*P(R→N3) = 3/4 * 100% * 1/4 = 3/16
P( R R R N3 ) = P(R→R)*P(R→R)*P(R→N3) = 1/4 * 1/4 * 1/4 = 1/64
所求 = 3/16 + 1/64 = 13/64

TOP

回復 12# nanpolend 的帖子

填充2
[ a b 1 2 ] 必為列向量 [ 1 0 3 4 ] 與 [ 0 1 5 7 ] 之線性組合
可設 [ a b 1 2 ] = x*[ 1 0 3 4 ] + y*[ 0 1 5 7 ]
1 = 3x+5y 且 2 = 4x+7y
解得 x = -3 , y = 2
[ a b ] = -3*[ 1 0 ] + 2*[ 0 1 ] = [ -3 2 ]

[ c d 4 3 ] = u*[ 1 0 3 4 ] + v*[ 0 1 5 7 ]
解得 u = 13 , v = -7
[ c d ] = 13*[ 1 0 ] -7*[ 0 1 ] = [ 13 -7 ]

TOP

回復 14# nanpolend 的帖子

填充8 我不會

TOP

發新話題