發新話題
打印

109竹科實中

推到噗浪
推到臉書
引用:
原帖由 Almighty 於 2020-4-18 19:35 發表
計算第二題,題目沒有特別明說P點在哪裡唷!!!
(應該需要老師們自行判斷,然後結論就是...)
感謝 #czk0622 老師的電子版本
能否借我放在第一個介面
方便其他老師點進來即可看到(參考) ...
計算二:
這樣就要分P點在三角形的
(1)內部   (2)外部   討論

TOP

引用:
原帖由 czk0622 於 2020-4-18 19:12 發表
整理後的 pdf 版
填7:
如果記憶版沒有抄錯的話,就是一題有爭議的考古題(106南二中)
畫出兩圖形後,有4個交點.....AB到底是哪兩點連線?

這樣有問題的考古題,為什麼又要再出現?

[ 本帖最後由 Ellipse 於 2020-4-18 23:16 編輯 ]

TOP

引用:
原帖由 Almighty 於 2020-4-19 01:28 發表
但會不會因為透過給定的長度而限制A、B兩點的選擇
當然或許可以產生其他數據滿足所限定的長度
其他數據恐怕用手算是算不出來的~

TOP

引用:
原帖由 jasonmv6124 於 2020-4-19 21:27 發表
請問計算第四題的答案是x^2/2+y^2=1嗎?
另外計算第三題是單純考計算嗎?
計三:考"微積分基本定理"

[ 本帖最後由 Ellipse 於 2020-4-20 08:55 編輯 ]

TOP

引用:
原帖由 jasonmv6124 於 2020-4-19 22:39 發表
請問第四題是怎麼算的呢?
假設P(x,y), A( x, [(4-x²)/2 ]^0.5 )  , B( x, -[(4-x²)/2 ]^0.5 )  
PA*PB=| y- [(4-x²)/2 ]^0.5 |*|y+ [(4-x²)/2 ]^0.5| =1 ,  
y²- (4-x²)/2 =1  ,得x²/6 +y²/3=1 (-2<x<2)
或y²- (4-x²)/2 = -1 ,得x²/2 +y²/1=1
(註:漏了一個答案,感謝年獸的提醒)

補圖一下~~

[ 本帖最後由 Ellipse 於 2020-4-20 08:57 編輯 ]

附件

109竹科實中計算4c.gif (1.39 MB)

2020-4-19 23:11

109竹科實中計算4c.gif

TOP

引用:
原帖由 Almighty 於 2020-4-19 01:28 發表
但會不會因為透過給定的長度而限制A、B兩點的選擇
當然或許可以產生其他數據滿足所限定的長度
學校已經公告填7答案:4096
但很明顯的正確答案不只有一個
所以請考生去寫"試題疑義申請表"
請學校回覆結果

TOP

引用:
原帖由 5pn3gp6 於 2020-4-24 14:49 發表
不好意思,想請問一下這一題,
題目是否有要求 P點在 L 上?
看了大家的解法,好像大家都直接把P當作是L上的一點
可是我看釋出的試題,好像沒有說這個條件? ...
官方沒釋出計算題題目,目前所看到的計算題是考生記憶版
一開始用手寫時有寫P點在L上,後來改成電子檔就沒有寫到這句話
之前討論都是依據當初手寫給的資訊來解題
至於 "P點有沒有在 L上"  那就要問有去考的考生了~

TOP

引用:
原帖由 Uukuokuo 於 2020-5-11 12:41 發表
想請教填充8
試了幾個方法,發現微分還是比較快
法1:微分法
令g(x)=7√ (9+x²) /3  , h(x)=(2/3)x
解g '(x)=(7x)/ [3√ (9+x²) ] =2/3  ,得x=2/(√ 5)  ( -2/(√ 5) 不合)
當x=2/(√ 5)時,所求有最小值
註:必須要說明當x>0時,g(x)為凹口向上函數

法2:橢圓切線(斜率)

法3:判別式

[ 本帖最後由 Ellipse 於 2020-5-11 22:31 編輯 ]

TOP

發新話題