發新話題
打印

109台中一中

9.
已知直線\(L\):\(6x-5y-28=0\)交橢圓\(\Gamma\):\(\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)(\(a>b>0\),且\(a,b\)皆為正整數)於兩點\(A\)、\(C\),且\(B(0,b)\)為橢圓\(\Gamma\)的頂點。若\(\Delta ABC\)的重心\(G\)恰為橢圓的右焦點\(F_2(c,0)\),其中\(c=\sqrt{a^2-b^2}\),則橢圓\(\Gamma\)的正焦弦長為   

橢圓那題應該有誤,a,b不能同時是整數。
不然就是我理解有誤

\(L:6x-5y-28=0,\,y=\frac{6x-28}{5}\),令橢圓與直線的兩交點為\(\left(\alpha,\frac{6 \alpha-28}{5}\right),\left(\beta,\frac{6 \beta-28}{5}\right)\)
兩交點與\((0,b)\)之重心為\((c,0)\)
 
由y座標:\(b+\frac{6 \alpha-28}{5}+\frac{6 \beta-28}{5}=0\) => \(5b+6\alpha-28+6\beta-28=0\) => \(\alpha+\beta=\frac{56-5b}{6}\) ===(*)
由x座標:\(\frac{0+\alpha+\beta}{3}=c\)  ==由(*)==> \(c=\frac{56-5b}{18}\)
所以\(c\)為有理數。又\(a,b\)為正整數,且\(a=\sqrt{b^2+c^2}\),所以c亦為正整數。
由\(b,c\)為正整數與\(c=\frac{5b+56}{18}\),可得\(b=4,c=2\),所以\(a=\sqrt{4^2+2^2}=\sqrt{20}\)。

 
所以正焦弦長為\(\frac{16\sqrt{5}}{5}\)。

但是\(a\)不是整數,與題目設定不合。
 
我用GGB跑了一下也是一樣的結果。
希望不是我理解錯誤。

附件

20200418_232246 (Custom).jpg (71.06 KB)

2020-4-18 23:27

20200418_232246 (Custom).jpg

TOP

看來第五題有好多種做法
我也提供一個用了分點公式、餘弦定理、正弦定理的方法


第11題
那個.....更正一下
中間那邊用的是餘弦定理,不是餘式定理
就不改圖了

TOP

台中一中給試題了  還附有詳解
h ttp://per.tcfsh.tc.edu.tw/zh_tw/top02/022/%E8%87%BA%E4%B8%AD%E5%B8%82%E7%AB%8B%E8%87%BA%E4%B8%AD%E7%AC%AC%E4%B8%80%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E5%AD%B8%E6%A0%A1109%E5%AD%B8%E5%B9%B4%E7%AC%AC1%E6%AC%A1%E6%95%99%E5%B8%AB%E7%94%84%E9%81%B8%E8%A9%A6%E9%A1%8C%E5%8F%8A%E8%A9%B3%E8%A7%A3-%E6%95%B8%E5%AD%B8%E7%A7%91-91791459 連結已失效

TOP

發新話題