發新話題
打印

108北一女代理

推到噗浪
推到臉書

108北一女代理

題號不一定按照順序 還請有去的老師一起補完

1.絕對值函數=a有三實根,求a的範圍
2.一個6*1的方格用紅黃綠三種顏色塗,每格塗一種顏色,規定3種顏色至少要都用到一次,問紅色不相鄰的情形有幾種
3.一個正五邊形ABCDE,向量AC=x向量AB+y向量AE 求(x,y)
4. \(2x^3-x \)= \(cos(10\pi x)\)有幾個實根
5.\(\Delta ABC\) ,\(\overline{AB}=5\)。\(\overline{BC}=7\)。\(\overline{AC}=6\) ,\(B\)點對\(\overline{AC}\)做垂線交\(\overline{AC}\)於\(E\)點,\(C\)點對\(\overline{AB}\)做垂線交\(\overline{AB}\)於\(F\)點
求\(\overline{EF}\)

6.
7.\(\lim_{n\rightarrow\infty } \sum_{k=1}^{n}\frac{1}{n!+(n+1!)}\)
8.(1) .a。b,c屬於實數,求\(4a+4b+4c-a^2-b^2-c^2\)的最大值
   (2)\(2^{\frac{a}{2}+\frac{2}{b}}\)+\(2^{\frac{b}{2}+\frac{2}{c}}\)+\(2^{\frac{c}{2}+\frac{2}{a}}\)的最小值
   (3)若\(\frac{a}{2}+\frac{2}{b}\)=\({log_{2}}^{4b-a^2}\),\(\frac{b}{2}+\frac{2}{c}\)=\({log_{2}}^{4c-b^2}\),\(\frac{c}{2}+\frac{2}{a}\)=\({log_{2}}^{4a-c^2}\),求\(a,b,c\)

想請問 2 .3. 8(2)(3)

[ 本帖最後由 satsuki931000 於 2019-7-6 22:38 編輯 ]

TOP

2.知道怎麼算了XD
分三種情形
1個紅球:不管怎麼選一定不相鄰 剩下的方法數為2^5-2 共有180種
2個紅球:不相鄰的情形有10種 剩下的方法數為2^4-2 共有140種
3個紅球:不相鄰的情形有4種 剩下的方法數為2^3-2,共有24種
總和為344種

TOP

回復 4# thepiano 的帖子

我印象中題目就是這樣
如果題目改成都是正實數該如何下手?

TOP

順便補一下中午想到的做法


[ 本帖最後由 satsuki931000 於 2019-7-7 20:58 編輯 ]

TOP

發新話題