發新話題
打印

107文華高中

推到噗浪
推到臉書

回復 2# d3054487667 的帖子

第13題
\(\begin{align}
  & {{a}_{n}}=3{{n}^{2}}-3n-1 \\
& {{a}_{3n}}=27{{n}^{2}}-9n-1 \\
& {{a}_{2n}}=12{{n}^{2}}-6n-1 \\
& \underset{n\to \infty }{\mathop{\lim }}\,\frac{\sqrt[3]{{{a}_{3}}+{{a}_{6}}+{{a}_{9}}+\cdots +{{a}_{3n}}}-\sqrt[3]{{{a}_{2}}+{{a}_{4}}+{{a}_{6}}+\cdots +{{a}_{2n}}}}{n} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\sqrt[3]{\frac{27\times \frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-9\times \frac{n\left( n+1 \right)}{2}-1}{{{n}^{3}}}}-\sqrt[3]{\frac{12\times \frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}-6\times \frac{n\left( n+1 \right)}{2}-1}{{{n}^{3}}}} \\
& =\sqrt[3]{9}-\sqrt[3]{4} \\
\end{align}\)

TOP

回復 2# d3054487667 的帖子

填充第 6 題
A(1,2,3),B(-2,-1,2)
OA = √14,OB = 3,AB = √19
cos∠AOB = √14 / 21,sin∠AOB = √427 / 21

向量 OP = x * 向量 OA + y * 向量 OB

所求 = 2 * (1/2) * OA * OB * sin∠AOB * (2 - 1) * [1 - (-1)] = 2√122

[ 本帖最後由 thepiano 於 2018-4-28 21:03 編輯 ]

TOP

回復 7# d3054487667 的帖子

第 10 題
z_1 在高斯平面上是圓 (x - 3)^2 + (y - 5)^2 = 2^2
z_2 在高斯平面上是圓 (x - 3)^2 + (y - 5)^2 = 1^2 或 (x - 3)^2 + (y - 5)^2 = 3^2
z_3 = kω + 2 = (2 - √3k) + ki,在高斯平面上是直線 x + √3y - 2 = 0
|z_2 - z_3| 的最小值出現在圓 (x - 3)^2 + (y - 5)^2 = 3^2 上一點到直線 x + √3y - 2 = 0 上一點的最小值
即點 (3,5) 到直線 x + √3y - 2 = 0 的距離再減 3

TOP

回復 7# d3054487667 的帖子

第 11 題
今年平行六面體的題目,都是考觀念啊

|向量 a| = 4
|向量 c| = 5
|向量 b| = 3
向量 a․向量 c = 10

向量 a 和向量 c 的夾角是 60 度
由向量 a 和向量 c 張成的平行四邊形面積 = 10√3
平行六面體的高 = 2

|向量 a + 向量 c| = √(4^2 + 5^2 - 2 * 4 * 5 * cos120度) = √61

(向量 a + 向量 c)․向量 b 的最大值 = √61 * 3 * [√(3^2 - 2^2) / 3] = √305

[ 本帖最後由 thepiano 於 2018-4-29 06:50 編輯 ]

TOP

回復 17# 小姑姑 的帖子

平移一下,會比較好做

TOP

回復 19# ssdddd2003 的帖子

第 14 題
\(\begin{align}
  & \underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{\sqrt{\left( 3n+k \right)\left( n-k \right)}}{{{n}^{2}}}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{k=1}^{n}{\sqrt{3-\frac{2k}{n}-{{\left( \frac{k}{n} \right)}^{2}}}} \\
& =\int_{0}^{1}{\sqrt{3-2x-{{x}^{2}}}} \\
\end{align}\)

\(y=\sqrt{3-2x-{{x}^{2}}}\)是圓\({{\left( x+1 \right)}^{2}}+{{y}^{2}}={{2}^{2}}\)的上半部
\({{\left( x+1 \right)}^{2}}+{{y}^{2}}={{2}^{2}}\)的圓心 A(-1,0),半徑 2
與 x 軸交於 B(1,0),與 y 軸交於 C(0,√3)

所求 = 扇形 ABC - 直角△AOC = \(\frac{2}{3}\pi -\frac{\sqrt{3}}{2}\)

[ 本帖最後由 thepiano 於 2018-4-29 19:32 編輯 ]

TOP

回復 19# ssdddd2003 的帖子

第 12 題
請參考附件

[ 本帖最後由 thepiano 於 2018-4-30 12:29 編輯 ]

附件

20180430.pdf (127.46 KB)

2018-4-30 12:29, 下載次數: 808

TOP

回復 37# JOE 的帖子

計算一
就是扇形著色問題
https://math.pro/db/thread-499-1-4.html

[ 本帖最後由 thepiano 於 2018-5-3 18:46 編輯 ]

TOP

回復 39# JOE 的帖子

不求一般項,直接用遞迴,七項的計算量應該還好

TOP

計算第 2 題
整理一下,請參考附件

附件

20180504.pdf (116.24 KB)

2018-5-4 10:05, 下載次數: 738

TOP

發新話題