發新話題
打印

106木柵高工(第二次)

推到噗浪
推到臉書

回復 6# martinofncku 的帖子

10. 假設長方體三個不同方向的邊長分別為 \( a, b, c \)

計算三組歪斜距離可得 \( \frac{bc}{\sqrt{b^{2}+c^{2}}}, \frac{ca}{\sqrt{c^{2}+a^{2}}}, \frac{ab}{\sqrt{a^{2}+b^{2}}} \)

因對稱性,不妨設

\( \begin{cases}
\frac{bc}{\sqrt{b^{2}+c^{2}}} & =2\sqrt{5}\\
\frac{ca}{\sqrt{c^{2}+a^{2}}} & =\frac{30}{\sqrt{13}}\\
\frac{ab}{\sqrt{a^{2}+b^{2}}} & =\frac{15}{\sqrt{10}}
\end{cases} \)

由第一式、第三式可得 \( c^{2}=\frac{20b^{2}}{b^{2}-20}, a^{2}=\frac{45b^{2}}{2b^{2}-45} \)

代入第二式得 \( \frac{20b^{2}}{b^{2}-20}\cdot\frac{45b^{2}}{2b^{2}-45}=\frac{900}{13}\left(\frac{20b^{2}}{b^{2}-20}+\frac{45b^{2}}{2b^{2}-45}\right) \)

左右同乘 \( \frac{13}{900b^2} (b^{2}-20)(2b^{2}-45) \),化簡得

\( 13b^{2}=85b^{2}-1800 \)

故 \( b=5, c=10, a=15 \),體積為 750
文不成,武不就

TOP

回復 14# goodluck 的帖子

第 6 題,還有另一個問題

求極限,本來就知道 \( f'(x) \) 的局部性質,

是求極限,不是求函數值。不連續的函數,此二者是不同的,因此不能隨意用函數值替代極限,除非知道是連續函數,或該局部連續。

也就是此計算還用了 \( f'(x) \) 在 \( x=0 \) 處連續的非已知條件

反例如下:

\( f(x)=x+x^{2}\sin\frac{1}{x} \), 以定義檢查可知 \( f'(0)=1 \)

\( f'(x)=1+2x\sin\frac{1}{x}-\cos\frac{1}{x}, \lim\limits _{x\to0} \frac{f'(x)}1 \) 不存在
文不成,武不就

TOP

回復 24# jackyxul4 的帖子

我忘了另外 定義 \( f(0)=0 \)
\( x\neq 0  \) 時,\( f(x) = x + x^2 \sin \frac1x \)
文不成,武不就

TOP

發新話題