發新話題
打印

104新竹女中

回復 1# Callmeluluz 的帖子

第一題
有\(7,8,9,10,14\)五個數,設\(s_2\)表任二數乘積的總和,設\(s_3\)表任三數乘積的總和,設\(s_4\)表任四數乘積的總和,則\(s_2+s_3+s_4\)之值為   
[提示]
這題也考過類似的。

考慮 \( (x+7)(x+8)(x+9)(x+10)(x+14) \) 展開的各項係數和

以 \( x=1 \) 代入再扣除我們不要的項 (5次項、4次項、常數項)


證明一,應該有漏條件,否則反例如下

\( T(x,y)=(2x,y) \), \( P(1,0) \), \( Q(0,1) \)

則 \( \overline{OP}:\overline{OP'}=1:2 \), \( \overline{OQ}:\overline{OQ'}=1:1 \)

若同樣的 T,改取 \( P(1,0) \), \( Q(1,1) \),則 \( \angle POP' = 0^\circ \neq \angle QOQ' \)


證明二,以 Geogebra 畫圖觀察,圖上所畫直線僅有 \( \overleftrightarrow{CD} \) 與圓 AEFC 相切
網頁方程式編輯 imatheq

TOP

回復 5# rueichi 的帖子

證明二:題目如果是這樣就沒問題了

證明的方向也正確,但有一瑕疵:T 的對應關係,已知的條件僅有對 \( (A_n, B_n) \) 這樣形式的點,而非平面上任意一點

也就是說令了點 P 坐標之後,不能直接套用 \( (A_n, B_n) \) 的映射去得到 \( P' \) 的坐標

而需要利用線性映射的性質把 \( A_{n+1} = A_n -B_n, B_{n+1} = A_n +B_n \) 的關係式推廣成 \( T: (x,y) \mapsto (x-y,x+y) \)

才能代入 \( P, Q \),而得到 \( P', Q' \) 之坐標
網頁方程式編輯 imatheq

TOP

回復 10# g112 的帖子

15 題
設\(f(x)=x^3+ax^2+bx+c\),若\(f(x)\)之極大值為\(A\),\(f(x)\)之極小值為\(B\),且\(f(x)\)的一階導函數\(f'(x)\)之最小值為\(C\),則\(A-B+C\)之最小值為   
[解答]
透過平移(左右移,不改變 A, B, C),不失一般性可假設 \( f(x) = x^3 + dx + e \)

則 \( f'(x) = 3x^2 +d \),因函數 \( f \) 有極大、極小值,故 \( d<0 \),不妨令 \( d = -3t^2 \),其中 \( t>0 \)

則 \( A = f(-t), B = f(t), C = -3t^2 \), \( A-B+C = 4t^3 - 3t^2 \)

透過微分計算,可知 \( A - B +C \) 在 \( t = \frac12 \) 時有最小值 \( -\frac14 \)。


16 題
正數\(x,y\)滿足\(ax+by \le 1\),其中\((log a)^2+2log b=1\),若\(xy\)之最大值為\(M\),則\(M\)之最小值為   
[解答]
首先先搞清題意,\( xy \) 的最大值為 \( M \),這句的意思是說
「固定一組 \( (a,b) \),在 \( x,y \) 為正數且滿足 \( ax+by\leq 1 \) 的情況下,所得到的 \( xy \) 最大值,即為 \( M = M(a,b) \)」

由算幾不等式有 \( \frac 12 \geq \frac{ax+by}{2} \geq \sqrt{axby} \Rightarrow xy \leq \frac1{4ab} \)
其等號在  \( x= \frac1{2a}, y =\frac1{2b} \) 時成立,故 \( M(a,b) = \frac1{4ab} \)

而 \( a,b \) 的限制條件為 \( (\log a)^2 + 2 \log b =1 \)

故取 \( \log M(a,b) = -\log 4 -\log a - \log b \) ( a,b 為限制條件中的真數必為正,故 M 亦正)

令 \( A = \log a \),以 \( \log b = \frac{1-A^2}{2} \) 代入 \( \log M(a,b) \) 得 \( \log M(a,b) = - \log 4 - A - \frac{1-A^2}{2} \)

配方可得 \( A = 1 \) 時 \( \log M(a,b) \),此時 \( M(a,b) \) 亦達有最小值 \( \frac1{40} \)
網頁方程式編輯 imatheq

TOP

發新話題