發新話題
打印

103金門高中

回復 6# 阿光 的帖子

第10題
作\(\overline{CD}\)垂直x軸於D
令∠\(CAD=\theta \quad \left( 0\le \theta \le \frac{\pi }{2} \right)\),則∠\(ABO=\theta \)
\(\begin{align}
  & \overline{OA}=\overline{CD}=a\sin \theta ,\overline{AD}=a\cos \theta  \\
& C\left( a\left( \sin \theta +\cos \theta  \right),a\sin \theta  \right) \\
& \overline{OC}=a\sqrt{{{\left( \sin \theta +\cos \theta  \right)}^{2}}+{{\sin }^{2}}\theta } \\
& =a\sqrt{1+\sin 2\theta +{{\sin }^{2}}\theta } \\
& =a\sqrt{\sin 2\theta -\frac{1}{2}\cos 2\theta +\frac{3}{2}} \\
\end{align}\)
故\(\overline{OC}\)最大值為\(\sqrt{\frac{\sqrt{5}}{2}+\frac{3}{2}}\ a\),最小值為\(a\)

TOP

回復 6# 阿光 的帖子

第7題
幫忙打字一下好了

(1)
\(\begin{align}
  & {{a}_{1}}=3 \\
& {{a}_{2}}=\frac{1}{3}\times 4\times 3=4 \\
& {{a}_{3}}=\frac{1}{9}\times {{4}^{2}}\times 3=\frac{16}{3} \\
& : \\
& {{a}_{n}}=\frac{4}{3}{{a}_{n-1}} \\
& \frac{1}{{{a}_{1}}}+\frac{1}{{{a}_{2}}}+\cdots +\frac{1}{{{a}_{n}}}+\cdots =\frac{\frac{1}{3}}{1-\frac{3}{4}}=\frac{4}{3} \\
\end{align}\)
(2)
\(\begin{align}
  & {{b}_{1}}=\frac{\sqrt{3}}{4} \\
& {{b}_{2}}={{b}_{1}}+{{\left( \frac{1}{3} \right)}^{2}}{{b}_{1}}\times 3 \\
& {{b}_{3}}={{b}_{1}}+{{\left( \frac{1}{3} \right)}^{2}}{{b}_{1}}\times 3+{{\left( \frac{1}{3} \right)}^{4}}{{b}_{1}}\times 12={{b}_{1}}+\left[ {{\left( \frac{1}{3} \right)}^{2}}\times 3+{{\left( \frac{1}{3} \right)}^{4}}\times 12 \right]{{b}_{1}} \\
& : \\
& {{b}_{n}}={{b}_{1}}+\left[ {{\left( \frac{1}{3} \right)}^{2}}\times 3+{{\left( \frac{1}{3} \right)}^{4}}\times 12+\cdots +{{\left( \frac{1}{3} \right)}^{2n-2}}\times 3\times {{4}^{n-2}} \right]{{b}_{1}} \\
& ={{b}_{1}}+\frac{3}{5}\left[ 1-{{\left( \frac{4}{9} \right)}^{n-1}} \right]{{b}_{1}} \\
& \underset{n\to \infty }{\mathop{\lim }}\,{{b}_{n}}=\frac{8}{5}{{b}_{1}}=\frac{2}{5}\sqrt{3} \\
\end{align}\)

TOP

回復 12# studentJ 的帖子

bugmens 兄筆誤,答案是\(\sqrt[3]{2}\)才對

TOP

回復 16# mandy 的帖子

第 5 題
(1)\({{10}^{210}}\)是211位數,\({{10}^{10}}+3\)是11位數
寫成除法直式觀察
可發現要先用\({{10}^{210}}\)的前12位數去除以\({{10}^{10}}+3\),得商的最高位是9
故\(\frac{{{10}^{210}}}{{{10}^{10}}+3}\)的整數部分是211-11=200位數

(2)
令\(x={{10}^{10}}\)
\(\begin{align}
  & \frac{{{10}^{210}}}{{{10}^{10}}+3}=\frac{{{x}^{21}}}{x+3}=\frac{{{x}^{21}}+{{3}^{21}}}{x+3}-\frac{{{3}^{21}}}{x+3} \\
& \frac{{{x}^{21}}+{{3}^{21}}}{x+3}={{x}^{20}}-3{{x}^{19}}+9{{x}^{18}}-\cdots -{{3}^{19}}x+{{3}^{20}}\equiv {{3}^{20}}\equiv 1\ \left( \bmod \ 10 \right) \\
& \frac{{{3}^{21}}}{x+3}=\frac{10460353203}{10000000003} \\
& 1<\frac{{{3}^{21}}}{x+3}<2 \\
\end{align}\)
故\(\frac{{{10}^{210}}}{{{10}^{10}}+3}\)的個位數的數字是9

TOP

發新話題