發新話題
打印

103松山家商

回復 2# wrty2451 的帖子

計算 1. 秒證,展開 \( (a-b)(b-c)(c-a) < 0 \),移項得證

順帶放幾個填充 6 的類題

(1) 101文華高中:\( \triangle ABC \) 中,\( A(2,-4) \),若 \( \angle B \)、\( \angle C \) 之角平分線分別為 \( L_{1}:\, x+y-2=0 \) 及 \( L_{2}:\, x-3y-6=0 \),則 \( \overleftrightarrow{BC} \) 之方程式為 \( \underline{\qquad\qquad} \)。     

(2) 98曉明女中:\( \triangle ABC \) 中,\( A \) 坐標為 \( (-7,15) \),\( \angle B \) 和 \( \angle C \) 的平分線方程式各為 \( 2x-y+4=0 \), \( x+7y+2=0 \),求 \( B \) 點和 \( C \) 點的坐標。

填充 8 類題

(1) 100文華高中代理:\( \lim\limits _{x\to4}\frac{\int_{4}^{x}\frac{1}{t+\sqrt{t}}dt}{x-4} \)。

(2) 100文華高中代理:若 \( f(x)=\int_{0}^{\sqrt{x}}\frac{t^{2}}{1+t^{2}+t^{4}}dt \),試求 \( f''(1) \)。

(3) 98台北縣聯招:設 \( F(x)=\int_{0}^{x^{2}}\frac{1}{1+\sin^{2}t}dt \),則導函數 \( F'(x) \) 為何?

(4) 99家齊女中: \( \lim\limits _{x\to0}\frac{\int_{x^{2}}^{x^{3}}\sqrt{1+t^{2}}dt}{x^{2}}=\underline{\qquad\qquad} \)。

填充 9 類題

(1) 100中正高中:已知平面上一點 P,其到正 \( \triangle ABC \) 的三個頂點距離分別為 1, 2, 3,試求正 \( \triangle ABC \) 的面積。

(2) 99松山高中、102南科實中:正 \( \triangle ABC \) 內部一點 \( P \),已知 \( \overline{PA}=6 \), \( \overline{PB}=8 \), \( \overline{PC}=10 \),求 \( \triangle ABC \) 面積。

(3) 100師大附中、100苑裡高中:設 \( \triangle ABC \) 為等邊三角形,\( D \) 為 \( \triangle ABC \) 內的點。已知 \( \overline{DA}=13 \), \( \overline{DB}=12 \), \( \overline{DC}=5 \),求 \( \triangle ABC \) 的邊長 。

(4) 99萬芳高中:\( ABCD \) 為正方形, \( P \) 為內部一點, \( \overline{PA}=3 \), \( \overline{PB}=4\sqrt{2} \), \( \overline{PD}=5\sqrt{2} \),求正方形 \( ABCD \) 的面積。

(5) 100彰化藝術暨田中高中:已知 \( P \) 為正方形 \( ABCD \) 內部的一點,若 \( \overline{AP}=7,\,\overline{BP}=5,\,\overline{CP}=1 \),試求正方形 \( ABCD \) 的面積。

(6) 正方形 \( ABCD \) 中一點 \( P \),已知 \( \overline{PA}=7,\,\overline{PB}=3,\,\overline{PC}=5 \),求此正方形的的面積。

[ 本帖最後由 tsusy 於 2014-6-11 11:30 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 5# cherryhung 的帖子

填 7.

第一個方程移項可得 \( 2^x = 4 -x \),由 \( y = 2^x,  y=4-x \) 兩函數圖形知方程式有唯一解 \( x = \alpha \)

\( 2^{4-x} = x \),令 \( x' = 4-x \),則 \( 2^{x'} = 4-x' \),故此方程式之解亦為 \( x' = \alpha \Rightarrow \beta = 4 - \alpha \Rightarrow \alpha + \beta  =4 \)

填 8. 微積分基本定理,積分均值定理

[ 本帖最後由 tsusy 於 2014-6-11 11:30 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

發新話題