發新話題
打印

103全國高中聯招

推到噗浪
推到臉書

回復 11# hua0127 的帖子

單選3
(1)
\( \Bigg[\; \matrix{x^{''} \cr y^{''}} \Bigg]\;=\Bigg[\; \matrix{cos 2 \alpha & sin 2 \alpha \cr sin 2 \alpha & -cos 2 \alpha} \Bigg]\; \Bigg[\; \matrix{cos 80^{\circ} & -sin 80^{\circ} \cr sin 80^{\circ} & cos 80^{\circ}} \Bigg]\; \Bigg[\; \matrix{x \cr y} \Bigg]\; \)
點旋轉矩陣\( \Bigg[\; \matrix{cos \theta & -sin \theta \cr sin \theta & cos \theta} \Bigg]\; \)

鏡射\( \Bigg[\; \matrix{cos 2 \theta & sin 2 \theta \cr sin 2 \theta & -cos 2 \theta} \Bigg]\; \)


(2)L:\( (\sqrt{3}-1)x-(\sqrt{3}+1)y=0 \) \( m=2-\sqrt{3} \)
\( \sqrt{1^2+(2-\sqrt{3})^2}=\sqrt{8-2 \sqrt{12}}=\sqrt{6}-\sqrt{2} \)
\( \displaystyle cos \alpha=\frac{1}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{4}=sin 75^{\circ} \)
\( \alpha=15^{\circ} \)或\( \alpha=-15^{\circ} \)

(3)\( y=(tan \theta )x \)
\( m=tan \theta \),\( \theta \)斜角
鏡射\( \Bigg[\; \matrix{cos 2 \theta & sin 2 \theta \cr sin 2 \theta & -cos 2 \theta} \Bigg]\; \)

(4)
\( \Bigg[\; \matrix{cos 2 \alpha & sin 2 \alpha \cr sin 2 \alpha & -cos 2 \alpha} \Bigg]\; \Bigg[\; \matrix{cos 80^{\circ} & -sin 80^{\circ} \cr sin 80^{\circ} & cos 80^{\circ} } \Bigg]\; =\Bigg[\; \matrix{cos 2 \theta & sin 2 \theta \cr sin 2 \theta & -cos 2 \theta} \Bigg]\; \)
\( cos 2 \alpha cos 80^{\circ}+sin 2 \alpha sin 80^{\circ}=cos 2 \theta \)

\( cos(2 \alpha-80^{\circ})=cos 2 \theta \)

\( 0<2 \theta <360^{\circ} \)

\( \alpha=15^{\circ} \)

\( 2 \alpha-80^{\circ}=-50^{\circ} \)

\( -50^{\circ}+360^{\circ}=310^{\circ} \)

\( 2\theta=310^{\circ} \)

\( \theta=155^{\circ} \)

單選4   把圖畫出來,就可以看出答案

[ 本帖最後由 shingjay176 於 2014-6-4 12:59 PM 編輯 ]

TOP

回復 14# Superconan 的帖子

常數項不能為0。
因為這樣就有一個根為0。
0是不正也不負。這狀況要排除。
考試時間壓力,再來一直找尋計算空間。算到最後都暈了。我也沒有在當下檢查到

TOP

回復 15# Superconan 的帖子

這是考古題。

TOP

回復 49# leo790124 的帖子

你好。。我那樣做,的確是為了找尋選擇題的答案長相。。。
如果是填充題,會不會變成問。。。0度到360度,可能的答案有那些?

TOP

發新話題