發新話題
打印

103彰化高中

回復 10# Ellipse 的帖子

讓小弟破梗一下XD
考慮\({{z}_{2}}\)為\({{z}_{1}}\)逆時針旋轉\(120{}^\circ \)後伸縮2倍,
\({{z}_{3}}\)為\({{z}_{1}}\)逆時針旋轉\(90{}^\circ \)後伸縮4倍,
若令\(\left| {{z}_{1}} \right|=a\), 則 \(\left| {{z}_{2}} \right|=2a\), \(\left| {{z}_{3}} \right|=4a\),
畫個圖將三角形ABC的面積表示出來為\(\left( 4-\frac{\sqrt{3}}{2} \right){{a}^{2}}\)
故考慮當\(\left| {{z}_{1}} \right|\)最小時會有最小面積,
就是橢圓大所描述的重點了,
\(a\)之最小值即為圓心到 \(P(0,-3),Q(2,1)\) 之中垂線之距離,
得到\({{a}^{2}}=\frac{1}{5}\), 故面積最小值為\(\frac{8-\sqrt{3}}{10}\)

TOP

回復 14# n10410 的帖子

線性代數的觀念有提到:
線性方程組 \(Ax=b\) 的解可拆成 \(Ax=0\) 之解與 \(Ax=b\)的某一特解之合成,
本題中\(Ax=0\)之解為\(t(2,3,4),t\in \mathbb{R}\), \((3,4,7)\) 為 \(Ax=b\)的某一特解,故所求答案為\((3,4,7)+t(2,3,4),t\in \mathbb{R}\)

簡單的證明如下:
令\(y\)為\(Ax=0\)之解, \({{y}_{0}}\)為\(Ax=b\)之一特解,
則\(A(y+{{y}_{0}})=Ay+A{{y}_{0}}=b\), 上述性質得證。

[ 本帖最後由 hua0127 於 2014-5-16 12:33 PM 編輯 ]

TOP

回復 32# Herstein 的帖子

溜馬兄在 27# 有說明到橢圓只能考慮右上半,
最小值產生在 橢圓取點 (-2,0), 直線取點 (-1,-1) 的時候
我想Herstein兄應該是考慮到整個橢圓的關係答案才是(83 - 14√34)/2

TOP

回復 35# 阿光 的帖子

bugmens 版主在第1頁 5# 的地方有附連結喔,可以參考一下

TOP

發新話題