發新話題
打印

103彰化高中

回復 25# panda.xiong 的帖子

第14題:畫樹狀圖

當 \(S_n\equiv 1(mod4)\) 時,\(S_{n+1}\equiv 1(mod4)\) 之機率為 \(\displaystyle \frac{1}{7}\)  〈第 \(n+1\) 次必得抽到4〉

而無論 \(S_n\equiv 0,2\ or\ 3(mod4)\) 時,\(S_{n+1}\equiv 1(mod4)\) 之機率皆為 \(\displaystyle \frac{2}{7}\)

〈例如:當 \(S_n\equiv 0(mod4)\),則第 \(n+1\) 次必須抽到1或5〉

故 \(\displaystyle P_{n+1}=\frac{1}{7}P_n+\frac{2}{7}(1-P_n)=\frac{2}{7}-\frac{1}{7}P_n\)

第17題:

看作是 \((s,s)\) 與 \((-7+5|\cos t|,3|\sin t|)\) 兩點距離的平方

那就是觀察直線 \(y=x\) 與橢圓 \(\displaystyle \frac{(x+7)^2}{5^2}+\frac{y^2}{3^2}=1\) 的右上半之最短距離平方

從圖觀察,看起來最短距離就是發生在當 \(s=-1\), \(t=0\) 時

故所求最小值為2

TOP

回復 28# panda.xiong 的帖子

將 \(\displaystyle \Big(\frac{x+x^2+\cdots+x^7}{7}\Big)^n\) 展開並且同類項合併後

各項中 \(x\)的指數代表這 \(n\) 次結果的數字和,而各項係數代表該數字和出現的機率  〈可以用 \(n=1,2,3,\cdots\) 的case逐一對照想像^^〉

題目中的 \(P_n\) 是數字和為 \(4k+1\), \(k\in Z\) 的機率,因此只要將指數為 \(4k+1\) 的那些項的係數求和即為 \(P_n\)

為了設法讓 \(4k+1\) 以外的項通通消失,只留下 \(4k+1\) 這些項的係數和

於是寸大設計了 \(f(x)=\Big(\displaystyle \frac{x+x^2+\cdots+x^7}{7}\Big)^n\times x^3\)

如此一來,\(\displaystyle \frac{f(1)+f(i)+f(-1)+f(-i)}{4}\) 的結果便是 \(P_n\)

〈若不乘上 \(x^3\) 這項,上式留下來的結果會是 \(4k\) 這些項的係數和〉

講得不精確的話,還請tsusy大指正!

TOP

發新話題