發新話題
打印

103松山高中(辛苦記憶版)

計算第七題
證明:
積分(1/2 -->1) [f(x)/f(x+1/2)]dx
=積分(1/2 -->1) [f(x)/f(x-1/2)]dx
(令t=x-1/2)
=積分( 0 -->1/2) [f(t+1/2)/f(t)]dt
=積分( 0 -->1/2) [f(x+1/2)/f(x)]dx
因此
積分(0 -->1) [f(x)/f(x+1/2)]dx
=積分(0 -->1/2) [f(x)/f(x+1/2)]dx + 積分(1/2 -->1) [f(x)/f(x+1/2)]dx
=積分(0 -->1/2) [f(x)/f(x+1/2)]dx + 積分( 0 -->1/2) [f(x+1/2)/f(x)]dx
=積分(0 -->1/2) [f(x)/f(x+1/2)+f(x+1/2)/f(x)]dx
由算幾不等式
>=積分(0 -->1/2) [2]dx
=1,得證。

TOP

計算第八題:

證明在正整數的定義域以及對應域之下,f(x)必為x。
證明:
反覆運用規則 f [ f(x)+f(y) ] = x+y
f(x+y+z+u)
=f { f [(f(x)+f(y)] + f [(f(z)+f(u)] }
=f(x)+f(y)+f(z)+f(u)
因此
f(4)=f(1+1+1+1)=f(1)+f(1)+f(1)+f(1)=4×f(1) .......第一式
f(4+a+b)=f(3+1+a+b)=f(3)+f(1)+f(a)+f(b)  又  f(4+a+b)=f(2+2+a+b)=f(2)+f(2)+f(a)+f(b)
對照得 f(3)+f(1)=2×f(2) .......第二式
f(5+a+b)=f(3+2+a+b)=f(3)+f(2)+f(a)+f(b)  又  f(5+a+b)=f(4+1+a+b)=f(4)+f(1)+f(a)+f(b)=4×f(1)+f(1)+f(a)+f(b)   (由第一式)
對照得 f(3)+f(2)=5×f(1)  .......第三式
由二、三兩式得 f(2)=2×f(1),f(3)=3×f(1),
由數學歸納法可證得 f(n)=n×f(1) 對所有正整數n皆成立。 ......結論1
令 f(1)=t,
將x=1,y=1 代入f [ f(x)+f(y) ] = x+y 之中,
得f [ f(1)+f(1) ] = 1+1 , f(2t)=2,
又由結論1,f(2t)=2t×f(1)=2t^2,
因此2t^2=2,得t^2=1,t=1。
故f(n)=n 對所有正整數n皆成立。

[ 本帖最後由 linteacher 於 2014-5-2 01:28 AM 編輯 ]

TOP

發新話題