11 12
發新話題
打印

103松山高中(辛苦記憶版)

填充 3
跟Catalan 數有關,答案應是 132

TOP

第 4 題
僅需求 C(605,k) * 5^(605 - k) 有最大值時的 k 即可
利用 f(k + 1) ≦ f(k) 和 f(k - 1) ≦ f(k)
可求出 k = 100 和 101

TOP

第 6 題另解
在 AC 上取一點 D,使得 CD = BC
AD = BI

△ICD 和 △ICB 全等 (SAS)
DI = BI

AD = DI
∠DIA = ∠DAI = ∠BAI
DI 和 AB 平行
ABID 是等腰梯形

∠BAC + ∠ABC = 180度 - 24度 = 156 度
∠BAC + 2∠BAC = 156 度
∠BAC = 52 度

TOP

填充第 2 題

附件

20140427.jpg (109.89 KB)

2014-4-27 16:58

20140427.jpg

TOP

第 6 題
a^2 + b^2 + c^2 = 7d^2
由 mod 8 可知四數均為偶數
左右兩邊同除以 4,改寫成 p^2 + q^2 + r^2 = 7s^2
如此不段進行,最後必最少有一數先變成奇數,不合
證畢

[ 本帖最後由 thepiano 於 2014-4-28 06:20 AM 編輯 ]

TOP

填充 3
這題的類似題,去年竹北高中代理就考過了

此題相當於把 1~12 這 12 個自然數不重複填入一個二列六行(共 12 格)的表格中
且同一列中,右比左大;同一行中,上比下大,問有幾種填法?

轉化成一個 6 * 6 的表格,A 在左下角,B 在右上角,從 A 走至 B 且不超過直線 AB (可在直線 AB 上)的捷徑走法數有幾種?

一開始在下列最左邊填入 1,代表先往右走一格
接下來若是往上走,表示在上列(由左而右)填入一個數字
若是往右走,表示在下列(由左而右)填入一個數字
數字要由小而大依序去填

所求 = C(12,6) * [1/(6 + 1)] = 132

[ 本帖最後由 thepiano 於 2014-4-29 11:22 AM 編輯 ]

TOP

計算第 4 題
xy + yz + zx = [(x + y + z)^2 - (x^2 + y^2 + z^2)]/2 = -3

xyz = [(x^3 + y^3 + z^3) - (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)]/3 = -8

(xy)^2 + (yz)^2 + (zx)^2 = (xy + yz + zx)^2 - 2xyz(x + y + z) = 41

(xy)^3 + (yz)^3 + (zx)^3 - 3(xyz)^2 = (xy + yz + zx)[(xy)^2 + (yz)^2 + (zx)^2 - xyz(x + y + z)]
(xy)^3 + (yz)^3 + (zx)^3 = (-3)(41 + 16) + 3 * 64 = 21

(x^3 + 1)(y^3 + 1)(z^3 + 1)
= (xyz)^3 + (xy)^3 + (yz)^3 + (zx)^3 + x^3 + y^3 + z^3 + 1
= (-8)^3 + 21 + 2 + 1
= -488

[ 本帖最後由 thepiano 於 2014-5-1 07:50 PM 編輯 ]

TOP

計算第 3 題
a_n = [1 * 3 * 5 * ... * (2n - 1)]/[2 * 4 * 6 * ... * (2n)] > [1 * 2 * 4 * ... * (2n - 2)]/[2 * 4 * 6 * ... * (2n)] = 1/(2n)
Σ[1/(2n)] (n = 1 ~ ∞) 發散,故 Σ(a_n) (n = 1 ~ ∞) 也發散

TOP

計算第 6 題
奇數^2 ≡ 1 (mod 8)
偶數^2 ≡ 0 or 4 (mod 8)

(1) a、b、c 是三奇數
a^2 + b^2 + c^2 ≡ 3 (mod 8)
7d^2 ≡ 7 or 0 or 4 (mod 8)
a^2 + b^2 + c^2 ≠ 7d^2

(2) a、b、c 是二奇數一偶數
a^2 + b^2 + c^2 ≡ 2 or 6 (mod 8)
7d^2 ≡ 7 or 0 or 4 (mod 8)
a^2 + b^2 + c^2 ≠ 7d^2

(3) a、b、c 是一奇數二偶數
a^2 + b^2 + c^2 ≡ 1 or 5 (mod 8)
7d^2 ≡ 7 or 0 or 4 (mod 8)
a^2 + b^2 + c^2 ≠ 7d^2

(4) a、b、c 是三偶數
此時 d 須為偶數,a^2 + b^2 + c^2 = 7d^2 才可能成立

令 a^2 + b^2 + c^2 = (2p)^2 + (2q)^2 + (2r)^2 = 4(p^2 + q^2 + r^2)
7d^2 = 7(2s)^2 = 28s^2

p^2 + q^2 + r^2 = 7s^2
若 p、q、r 仍是三偶數,則再依上列步驟進行,如此繼續不斷,一定會產生 (1) or (2) or (3) 三種情形之一

故不存在不為 0 的整數 a、b、c、d 讓 a^2 + b^2 + c^2 - 7d^2 = 0

TOP

引用:
原帖由 shingjay176 於 2014-5-11 11:06 AM 發表
用\(mod 4\)可以證明出來嗎??
a、b、c 是三奇數
a^2 + b^2 + c^2 ≡ 3 (mod 4)
7d^2 ≡ 0 or 3 (mod 4)
在這裡就會卡住 ...

TOP

 11 12
發新話題