發新話題
打印

103北一女中

回復 3# Ellipse 的帖子

計算 5. 算出來是曲線 \( \sqrt{x} + \sqrt{y} =1 \) 和坐標軸圍成的區域
網頁方程式編輯 imatheq

TOP

引用:
原帖由 tsusy 於 2014-4-18 02:09 PM 發表
計算 5. 算出來是曲線 \( \sqrt{x} + \sqrt{y} =1 \) 和坐標軸圍成的區域
印象中這個曲線好像是"拋物線"~

TOP

回復 11# tsusy 的帖子

所以是拋物線嗎?@
請問如何證明是這個曲線呢?
謝謝

TOP

填充1
利用平行四邊形定理,四邊為1,其中一條對角線長10/13
得到另一對角線長後,再用海龍公式算面積

填充2
分別對x、y偏微分,得極值發生在x=-y or x=±1
但x=-y不合,當x=±1, y=0代入

填充3
令極坐標P(r,θ)
A(10°)B(20°)A(30°)B(40°)A(50°)B(60°)A(70°)B(80°)A(90°)(r,θ)
=A(10°)B(20°)A(30°)B(40°)A(50°)B(60°)A(70°)B(80°)(r,90°+θ)
=A(10°)B(20°)A(30°)B(40°)A(50°)B(60°)A(70°)(r,-10°-θ)
=A(10°)B(20°)A(30°)B(40°)A(50°)B(60°)(r,60°-θ)
=A(10°)B(20°)A(30°)B(40°)A(50°)(r,θ)
=---
=A(10°)(r,θ)

填充4

第一場可能甲贏或甲輸
令P1表示甲已贏一場,獲勝的機率、P0表示甲還沒贏一場,獲勝的機率
討論若甲獲勝每局輸的人
1.甲先贏
則輸的人依序是
乙)丙        ,則甲勝
乙)甲丙乙  又回到P1的情形,故P1=(1/2)+(1/8)P1,得P1=8/14
                          
2.甲輸第一局
則輸的人依序
甲)乙丙      ,又回到P1的情形,P0=(1/4)P1=2/14

P=(1/2)(P0+P1)
故所求為5/14

計算一


[ 本帖最後由 shiauy 於 2014-4-18 08:01 PM 編輯 ]

TOP

回復 15# thepiano 的帖子

鋼琴兄應該是不小心記錯了,星形線是長度固定為 1 的時候

這題是截距和為 1,圖形如下

網頁方程式編輯 imatheq

TOP

填充2我是這麼想,可能不嚴謹

看到平方和求最小值,可用高一上所學過的平均觀念去想,剛好可配合算幾不等式

TOP

填充2

令A(x,1/x),B(-y,y)
則A為雙曲線xy=1上的動點,B為直線y=-x上的動點
原題目變成求AB距離平方的最小值

作圖易知當A(1,1),B(0,0)時,所求有最小值=2
莫忘初衷。就算再難,也想任性地堅持下去,證明自己。

TOP

引用:
原帖由 tsusy 於 2014-4-18 05:27 PM 發表
星形線是長度固定為 1 的時候
這題是截距和為 1
感謝寸絲兄的指正,是小弟愚鈍,誤解題意!

TOP

回復 13# johncai 的帖子

是拋物線沒錯,Ellipse 兄太厲害了

我是用了微分找固定 \( x \),軌跡中 \( y \) 的最大值,一言以蔽之就是暴力找出邊界曲線的函數

令 \( y = (1-t)(1-\frac{x}{t}) \),則 \( \displaystyle \frac{dy}{dt} = \frac{x-t^{2}}{t^{2}} \)

判別零點和正負,可知在 \( 0 < t < 1 \), 固定 \( x \) 滿足 \( 0\leq x\leq 1\) 的條件下,\( t = \sqrt{x} \),\( y \) 有最大值 \( (1-\sqrt{x})^2 \)

計算積分 \( \displaystyle \int_0^1 1-\sqrt{x})^2 dx = \frac16 \)
網頁方程式編輯 imatheq

TOP

填充2.
設\( x,y \in R \),\( x \ne 0 \),則函數\( f(x,y)=(x+y)^2+(\frac{1}{x}-y)^2 \)的最小值是  
[解答]
\( \displaystyle f(x,y)=x^2+2xy+y^2+\frac{1}{x^2}-\frac{2y}{x}+y^2=(x-\frac{1}{x})^2+2-2y(x-\frac{1}{x})+y^2+y^2=(x-\frac{1}{x}-y)^2+y^2+2 \)
當\( x=\pm 1,y=0 \)時有最小值2


103.4.21補充
感謝Superconan指正,這是計算3
計算3.
(1)如下圖,\( \overline{AE}=4 \),\( \overline{AD}=2 \),\( \overline{AB}=3 \),\( \overline{AE} \)中有一點Q使\( \overline{AQ}:\overline{QE}=3:1 \),且P為\( \overline{CG} \)中點,問平面BPQ在此長方體的截痕為幾邊形?
(2)同上題,以兩種方法解說給學生聽。
(3)求平面BPQ把此長方體截成兩半後,較小那塊之體積。

[解答]
(1)五邊形
(2)除了坐標化的方法外也可以將長方體展開,\( \overline{BP} \)交\( \overline{GH} \)於I,\( \overline{BQ} \)交\( \overline{HE}\)於J,故BPIJQ為五邊形
(3)
感謝linteacher提供想法http://www.shiner.idv.tw/teacher ... t=3269&start=20
較大塊體積=最大的四面體-3個小四面體\( \displaystyle =\frac{1}{6}(5^3-1^3-2^3-3^3)=\frac{89}{6} \)
較小塊體積=長方體-較大塊體積\( \displaystyle =2 \times 3 \times 4-\frac{89}{6}=\frac{55}{6} \)




103.75補充
計算4.
 □□□□□□□□□□ 十個格子塗紅、黃、綠三色,相鄰不同色
 (1) 若第1格和第10格不同色,方法數為何?
 (2) 若第1、5、10都不同色,方法數為何?

以下的題目取自凡異出版社出版的"遞歸數列"一書中第149頁練習五
6.
考慮一個\( 1 \times n \)格棋盤,假定我們對棋盤的每個方格用紅、藍兩種顏色著色,相鄰兩格不能著紅色。令\( a_n \)表示沒有任何兩個相鄰的方格著紅色的著色個數。試建立\( a_n \)所滿足的遞歸方程,並求出\( a_n \)的表達式。
[解答]
若第一格著的是藍色,那麼餘下的\( (n-1) \)格符合題意的著色方法有\( a_{n-1} \)種,若第一格著的是紅色,那麼第二格只能著藍色,餘下的\( (n-2) \)格符合題意的著色方法有\( a_{n-2} \)個,所以\( a_n=a_{n-1}+a_{n-2} \)。

7.
考慮一個\( 1 \times n \)格棋盤,使用m種顏色的全部或其中幾種顏色將這棋盤著色,並且:一、相鄰兩格顏色要不同;二、相鄰兩格及兩端的兩格也要著成不同的顏色。並設一、二的著色方法數分別為\( a_n \)與\( b_n \),\( m \ge 3 \)。那麼:
(1)求\( b_2 \),並用m、n表示\( a_n \);
(2)當\( n \ge 3 \)時,求\( b_n \),\( b_{n-1} \)與\( a_n \)之間的關係;
(3)用m,n表示\( b_n \)。
[解答]
(1)
第一格著色有m種方法,則第二格有\( m-1 \)種方法,所以兩端兩格的著色方法有\( b_2=m(m-1) \)種。
\( a_n =(m-1)a_{n-1} \),\( a_1=m \),\( a_n=m(m-1)^{n-1} \)。
(2)
對於(1)中的\( a_n \),它的兩端有兩種可能性:第一種是兩端不同的顏色,所以應有\( b_n \)種方法;第二種是兩端著相同的顏色,那麼它相當於\( (n-1) \)格的兩端著不同的顏色的情況,即有\( b_{n-1} \)種方法,所以\( a_n=b_n+b_{n-1} \)。
(3)
\( b_n+b_{n-1}=m(m-1)^{n-1} \)
使用待定係數法設\( b_n-km(m-1)^n=(-1) \cdot [b_{n-1}-km(m-1)^{n-1}] \)

移項得\( b_n+b_{n-1}=km(m-1)^n+km(m-1)^{n-1} \)

和原式比較係數得\( m(m-1)^{n-1}=km(m-1)^n+km(m-1)^{n-1} \),得\( \displaystyle k=\frac{1}{m} \)

\( b_n-(m-1)^n=(-1)^1[b_{n-1}-(m-1)^{n-1}]=(-1)^2[b_{n-2}-(m-1)^{n-2}]=\ldots=(-1)^{n-2}[b_2-(m-1)^2] \)

將\( b_2=m(m-1) \)代入

\( b_n-(m-1)^n=(-1)^{n-2}[m(m-1)-(m-1)^2]=(m-1)(-1)^{n-2} \)

\( b_n=(m-1)(-1)^{n-2}+(m-1)^n \)

將\( (-1)^{n-2} \)改成\( (-1)^n \)和\( (m-1)^n \)次方一致

得\( b_n=(m-1)(-1)^n+(m-1)^n \)


計算5.
有一線段交x軸於\( (t,0) \),交y軸於\( (0,1-t) \),\( 0 \le t \le 1 \),求此線段形成的圖形與x、y軸圍成區域的面積。
[解答]
http://140.122.140.2/~cyc/m1117.doc
我是參考陳創義老師在第一頁的結論

包絡線\( \alpha(\lambda)=(x(\lambda),y(\lambda)) \)滿足
\( \displaystyle \Bigg\{\; \matrix{F(x(\lambda),y(\lambda),\lambda)=0 \cr F_{\lambda}(x(\lambda),y(\lambda),\lambda)=0} \)

\( \overline{AB} \)的直線方程式為\( \displaystyle y=\frac{t-1}{t}x+1-t \),令\( \displaystyle F=x-\frac{x}{t}-y+1-t=0 \)
F函數對t微分,\( \displaystyle F_t=\frac{x}{t^2}-1=0 \) , \( t=\pm \sqrt{x} \)(負不合)
\( t=\sqrt{x} \)代入F函數
\( x-\frac{x}{\sqrt{x}}-y+1-\sqrt{x}=0 \) , \( (\sqrt{x}-1)^2=(\pm \sqrt{y})^2 \) , 取第一象限的\( \sqrt{x}+\sqrt{y}=1 \)

[ 本帖最後由 bugmens 於 2014-7-5 10:20 AM 編輯 ]

附件

截面較小體積SketchUp檔.zip (42.54 KB)

2014-4-20 21:28, 下載次數: 7179

TOP

發新話題