發新話題
打印

102文華高中

推到噗浪
推到臉書

回復 5# natureling 的帖子

第5題
因為x,y,z最多為三位數,所以a的可能值與(x,y,z)解的個數相同
\(\displaystyle 360=2^3 \times 3^2 \times 5 \)
每個質因數必須有人取到最高次,所以是
\(\displaystyle (4^3-3^3)(3^3-2^3)(2^3-1^3)=4921 \)

TOP

回復 5# natureling 的帖子

第7題
令 \( a,b,c,d,e,p \) 分別表示A,B,C,D,E,P所代表的複數
\(\displaystyle z^5-i=(z-a)(z-b)(z-c)(z-d)(z-e) \)
所求為
\(\displaystyle |p-a||p-b||p-c||p-d||p-e|=|(p-a)(p-b)(p-c)(p-d)(p-e)|=|p^5-i|=|-4-5i|=\sqrt{41} \)

TOP

第9題
\(\displaystyle a_1=1+1+2+1+2=7 \)
\(\displaystyle na_n=C_3^{n+2}+n^3+2n^2+n+2-C_3^{n+1}-(n-1)^3-2(n-1)^2-(n-1)-2 \)
\(\displaystyle =C_2^{n+1}+(3n^2-3n+1)+2(2n-1)+1 \)
\(\displaystyle =\frac{1}{2}(7n^2+3n) \)
所以 \(\displaystyle a_n=\frac{1}{2}(7n+3) \)
所求為
\(\displaystyle 7+\sum_{k=2}^{10}\frac{1}{2}(7k+3) \)
\(\displaystyle =7+\frac{1}{2}(\frac{7}{2} \cdot 10 \cdot 11+30-10)=\frac{419}{2} \)

TOP

回復 10# weiye 的帖子

瑋岳老師回得比較詳細

TOP

回復 15# t3712 的帖子

第14題
將A點以x軸為轉軸旋轉至xy平面上,得到A'(6,-5,0)

將B點以y軸為轉軸旋轉至xy平面上,得到B'(-5,8,0)

所求即為 \( A'B'=\sqrt{11^2+13^2}=\sqrt{290} \)

TOP

回復 15# t3712 的帖子

第12題
三數相加後減25為此數的倍數
\( 63+91+129-25=258 \)
\( 258=2 \times 3 \times 43 \)
檢查一下知此數為43

TOP

計算二
由角度關係知道ABCD為圓內接四邊形
且由橢圓定義有 AB+BC=AD+DC
半周長 s 即為 s=AB+BC=AD+DC
圓內接四邊形面積
\(\displaystyle \sqrt{(s-AB)(s-BC)(s-CD)(s-AD)}=\sqrt{BC \times AB \times AD \times CD}=\sqrt{2013} \)

附註:
因為是圓內接四邊形,假定圓心是O,把扇形OAB和扇形OAD剪下交換,那麼新的四邊形ADBC就滿足對邊和相等,
也就是它是雙心四邊形,那麼面積就是四邊乘積再開根號。

[ 本帖最後由 lyingheart 於 2013-4-28 07:47 PM 編輯 ]

TOP

回復 53# panda.xiong 的帖子

簡單的說,就是兩點連線段為最短。
如果題目是:A(6,5),B(5,8),想在x軸上找一點P以及y軸上找一點Q,
使得AP+PQ+QB為最短,那麼應如何做??
我想你應該知道做法就是取A關於x軸的對稱點A',以及B關於y軸的對稱點B',
連接A'B'分別與x軸、y軸交於P、Q兩點即為所求(當然,這還有條件),
而最短距離就是A'B'。
但是現在的問題是在空間中,如果做A關於x軸的對稱點和B關於y軸的對稱點,
其連線不一定會通過x軸與y軸,所以用對稱的想法在此不行。
換一種想法,在平面上的問題,作關於x軸的對稱點這件事,放在空間中,
可以看成是以x軸為轉軸旋轉180度,這提供了空間中的解法,也就是我所用的方法。
你也可以假設P(x,0,0),Q(0,y,0)進去用代數方式,會發現就變成平面的問題了。

TOP

發新話題