發新話題
打印

102大直高中

回復 2# 阿光 的帖子

填充第 8 題:
有一個數列,\( a_1=1 \)且\( a_9+a_{10}=646 \)。此數列的第一、第二、第三項成等比數列,第二、第三、第四項成等差數列;且一般而言,對所有的\( n \ge 1 \),\( a_{2n-1},a_{2n} \)及\( a_{2n+1} \)成等比數列,\( a_{2n},a_{2n+1} \)及\( a_{2n+2} \)成等差數列。設\( a_k \)為此數列中小於1000的最大項,試求\( k= \)?
[解答]
拋磚引玉一下,小弟的作法有點繁瑣~而且答案有兩個~==? 

有勞大家幫忙 debug 了!:P

-----------------------------------------------------------------------------------

令 \(a_2 = r\),則

觀察一下數列:

\(a_1 = 1\)

\(a_2 = r\)

\(\displaystyle a_3 = \frac{\left(a_2\right)^2}{a_1}=r^2\)

\(a_4=2a_3-a_2 = r\left(2r-1\right)\)

\(\displaystyle a_5=\frac{\left(a_4\right)^2}{a_3}=\left(2r-1\right)^2\)

\(a_6=2a_5-a_4 = \left(2r-1\right)\left(3r-2\right)\)

\(\displaystyle a_7=\frac{\left(a_6\right)^2}{a_5}=\left(3r-2\right)^2\)

\(a_8=2a_7-a_6 = \left(3r-2\right)\left(4r-3\right)\)

\(\displaystyle a_9=\frac{\left(a_8\right)^2}{a_7}=\left(4r-3\right)^2\)

\(a_{10}=2a_9-a_8 = \left(4r-3\right)\left(5r-4\right)\)

可以找到規律是 \(a_{2n+1}=\left(nr-\left(n-1\right)\right)^2, a_{2n}=\left(\left(n-1\right)r-\left(n-2\right)\cdot\left(nr-\left(n-1\right)\right)\right),\forall n\geq 2\)

(應該可以用數學歸納法證明這件事~:P)

由 \(a_9+a_{10}=646\),可得 \(\displaystyle r=\frac{-125}{36}\) 或 \(r=5\)

若 \(r=5\),則 \(a_{2n+1}=\left(nr-\left(n-1\right)\right)^2<1000 \Rightarrow n\leq 7\)

        \(a_{2n}=\left(\left(n-1\right)r-\left(n-2\right)\cdot\left(nr-\left(n-1\right)\right)\right)<1000\Rightarrow n\leq8\)

        \(\Rightarrow k=2\times8=16\)

若 \(\displaystyle r=\frac{-125}{36}\),則 \(a_{2n+1}=\left(nr-\left(n-1\right)\right)^2<1000  \Rightarrow n\leq 7\)

        \(a_{2n}=\left(\left(n-1\right)r-\left(n-2\right)\cdot\left(nr-\left(n-1\right)\right)\right)<1000\Rightarrow n\leq7\)

        \(\Rightarrow k=2\times7+1=15\)

多喝水。

TOP

回復 13# 王保丹 的帖子

第 9 題:
若\(a>0,b>0\),則\(\displaystyle \frac{\sqrt{a+1}+\sqrt{b+3}}{\sqrt{a+b+4}}\)的最大值為   
[解答]
已知 \(a>0, b>0\)

由柯西不等式,可得

\(\displaystyle \left(\left(\sqrt{a+1}\right)^2+\left(\sqrt{b+3}\right)^2\right)\left(1^2+1^2\right)\geq\left(1\cdot\sqrt{a+1}+1\cdot\sqrt{b+3}\right)^2\)

  \(\displaystyle \Rightarrow \frac{\left(\sqrt{a+1}+\sqrt{b+3}\right)^2}{a+b+4}\leq 2\)

  \(\displaystyle \Rightarrow \frac{\sqrt{a+1}+\sqrt{b+3}}{\sqrt{a+b+4}}\leq \sqrt{2}\)

且當等號成立時,\(\displaystyle \frac{\sqrt{a+1}}{1}=\frac{\sqrt{b+3}}{1}\Leftrightarrow a=b+2\)

多喝水。

TOP

回復 18# Sandy 的帖子

第 1 題:
設\(n\)為大於1的正整數,若\(n^2+3n+11\)為兩相鄰正奇數的乘積,則\(n=\)   
[解答]
依題意可令 \(\displaystyle n^2+3n+11 = (2k-1)(2k+1)\),其中 \(k\) 正整數,

\(\displaystyle \left(n+\frac{3}{2}\right)^2+\frac{39}{4} = 4k^2\)

\(\displaystyle \Rightarrow \left(4k\right)^2 - \left(2n+3\right)^2= 39\)

可得 \(\displaystyle \left(4k-2n-3\right)\left(4k+2n+3\right)=39\)

且因為 \(n,k\) 皆為正整數,所以 \(4k+2n+3>4k-2n-3\) 且兩者皆為正整數,

所以

case 1: \(\displaystyle 4k-2n-3=1, 4k+2n+3=39 \Rightarrow k=5, n=8\)

case 2: \(\displaystyle 4k-2n-3=3, 4k+2n+3=13 \Rightarrow k=1, n=1\) (不合)

多喝水。

TOP

發新話題