發新話題
打印

101南區國中數學聯招

回復 1# f19791130 的帖子

第50題

如果不硬算的話,那比較容易

\(2^{100000}\equiv 1~(mod~11)\)

\(2^{100000}\equiv 2~(mod~7)\)

這樣就知道,只有(B)是最有可能的。

第22題

不失一般性,假設 \(a\leq b\leq c\)

(1)若 \(abc) 為偶 ,則 \(a=2\)

     即 \(abc\) 為偶,則 \(a+b+c\) 為奇 \(\Rightarrow b+c\) 為奇

     則 \(b=2\Rightarrow c\) 為奇

     所以 \(a+b+c+abc=2+2+c+4c=99\Rightarrow c=19\)

     故得 \((a,b,c)=(2,2,19)\)

(2)若 \( abc) 為奇 ,則 \(a>2\)

     所以 \(a+b+c\) 與 \(abc\) 皆為奇

     則  \(a+b+c+abc\) 為偶,不合

故由(1)(2),得 \(a+b+c=23\)

[ 本帖最後由 katama5667 於 2012-7-6 09:27 AM 編輯 ]

TOP

回復 6# 阿光 的帖子

46題

令\(T\) 的 adjoint 為 \(T^{*}(z,w)=(u,v)\)  

依據 adjoint 的定義  \(<T(x,y),(z,w)>=<(x,y),T^{*}(z,w)>\) 與題中內積與 \(T\) 的定義,

則 \(<(2x+iy,(1-i)x),(z,w)>=<(x,y),(u,v)>\)  

\(\Rightarrow (2x+iy)\bar{z}+(1-i)x\bar{w}=x\bar{u}+y\bar{v}\)  

\(\Rightarrow x(2\bar{z}+\bar{w}-i\bar{w})+y(i\bar{z})=x\bar{u}+y\bar{v}\)

所以 \(u=2z+w+iw,  v=-iz\)   

將所求代入

\(T^{*}(3-i,1+2i)=(2(3-i)+(1+2i)+i(1+2i),-i(3-i))=(5+i,-1-3i)\)


48題

\(W_{1}\cap W_{2}=Span\{\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\}\Rightarrow dim(W_{1}\cap W_{2})=1\)

這個應該不需太多解釋吧!


而 \(dim (W_{1}+W_{2})=4\),因為

令 \(s\begin{pmatrix} a & b\\ c & a \end{pmatrix}+t \begin{pmatrix} 0 & a\\ -a & b \end{pmatrix}=\begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}\)  ,則解得 \(s=t=0\)

(太久沒寫這個了,不知是否有誤)

故所求為 5

[ 本帖最後由 katama5667 於 2012-7-15 12:11 AM 編輯 ]

TOP

發新話題