發新話題
打印

101北ㄧ女(二招)

計算4
\(\displaystyle a_{n+1}=\frac{1}{13}(a_n^3-12) \) ,求收斂範圍及收斂值。

考慮此數列的遞增遞減範圍,也就是找
\(\displaystyle a_{n+1}=\frac{1}{13}(a_n^3-12) > a_n \) 的範圍
\(\displaystyle (a_n+3)(a_n+1)(a_n-4) > 0 \)
\(\displaystyle -3 < a_n < -1 or 4 < a_n \)
意即若 \(\displaystyle -3 < a_1 < -1 or  4 < a_1 \),數列 \( <a_n> \) 遞增; (感謝 rudin 提醒)
當 \(\displaystyle a_1=-3, -1, 4 \) ,數列 \( <a_n>=<-3> , <-1> , <4>  \)
當 \(\displaystyle a_1 < -3 or -1 < a_1 < 4 \) ,數列 \( <a_n> \) 遞減。
所以
當 \(\displaystyle a_1 > 4 \) ,\( <a_n> \) 發散;
當 \(\displaystyle a_1 = 4 \) ,\(\displaystyle a_n \rightarrow 4 \);
當 \(\displaystyle -1 < a_1 < 4 \) ,\( <a_n> \) 遞減有下界, \(\displaystyle a_n \rightarrow -1 \);
當 \(\displaystyle a_1 = -1 \) ,\(\displaystyle a_n \rightarrow -1 \);
當 \(\displaystyle -3 < a_1 < -1 \) ,\( <a_n> \) 遞增有上界, \(\displaystyle a_n \rightarrow -1 \);
當 \(\displaystyle a_1 = -3 \) ,\(\displaystyle a_n \rightarrow -3 \);
當 \(\displaystyle a_1 < -3 \) ,\( <a_n> \) 發散。

綜上所述,當 \(\displaystyle -3 \le a_1 \le 4 \) ,\( <a_n> \) 收斂;收斂值為 \(\displaystyle -3, -1, 4 \)

[ 本帖最後由 老王 於 2012-6-27 04:09 PM 編輯 ]
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

發新話題