發新話題
打印

101新化高中代理

回復 1# redik 的帖子

第1題
設\( a_n=2^{n-1} \),\( n \)是正整數,求\( \displaystyle \lim_{n \to \infty} \frac{(1+2^{a_1})(1+2^{a_2})(1+2^{a_3})\ldots (1+2^{a_n})}{2^{a_1+a_2+\ldots+a_n}}= \)?

\(\displaystyle a_1+a_2+\cdots+a_n=1+2+4+\cdots+2^{n-1}=2^n-1 \)
\(\displaystyle (1+2)(1+2^2)(1+2^4)\cdots(1+2^{2^{n-1}}) \)
\(\displaystyle =(2-1)(1+2)(1+2^2)(1+2^4)\cdots(1+2^{2^{n-1}}) \)
\(\displaystyle =(2^2-1)(1+2^2)(1+2^4)\cdots(1+2^{2^{n-1}}) \)
\(\displaystyle =(2^4-1)(1+2^4)(1+2^8)\cdots(1+2^{2^{n-1}}) \)
\(\displaystyle =2^{2^n}-1 \)
\(\displaystyle \lim_{n \rightarrow \infty} \frac{2^{2^n}-1}{2^{2^n-1}}=2 \)
不知哪裡算錯??

第16題
二數列\( \langle\; a_n \rangle\; \)、\( \langle\; b_n \rangle\; \)具有\( a_1=1 \),\( b_1=1 \),且\( \forall n \in N \),\( \cases{a_{n+1}=a_n-2b_n \cr b_{n+1}=a_n+4b_n} \)。求\( a_n= \)?

由(1) \(\displaystyle b_n=\frac{1}{2}a_n-\frac{1}{2}a_{n+1} \) 代入 (2) 得到
\(\displaystyle \frac{1}{2}a_{n+1}-\frac{1}{2}a_{n+2}=a_n+2a_n-2a_{n+1} \)
\(\displaystyle a_{n+2}-5a_{n+1}+6a_n=0 \)
特徵方程式為 \(\displaystyle x^2-5x+6=0 \) ,兩根 \( 2,3 \)
所以假設 \(\displaystyle a_n=c_1\times2^n+c_2\times3^n \)
由初始條件 \( a_1=1, a_2=1-2=-1 \) 代入解得 \( c_1=2, c_2=-1 \)
所以 \(\displaystyle a_n=2\times2^n-1\times3^n=2^{n+1}-3^n \)

第18題
\( \Delta ABC \)中,\( ∠B=90^{\circ} \),且\( \overline{BC}=a \),\( \overline{CA}=b \),\( \overline{AB}=c \),若\( \forall x \in R \),恆有\( ax^2+bx+c \ge 0 \),求\( ∠A \)之最大值?

\(\displaystyle b^2=a^2+c^2 \)
\(\displaystyle b^2-4ac \le 0 \)
所以 \(\displaystyle a^2-4ac+c^2 \le 0 \)
令 \(\displaystyle t=\tan A=\frac{a}{c} \)
\(\displaystyle t^2-4t+1 \le 0 \)
\(\displaystyle 2-\sqrt3 \le t \le 2+\sqrt3 \)
所以 \( \angle A \) 最大值為 \( 75^o \)
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

回復 5# arend 的帖子

第2題
設\( a \)為整數,若多項式\( f(x)=(x-2012)(x-2010)(x-a)-48 \)有整係數一次因式,試求\( a \)?

題目是分解好的,不必展開;或是說,展開只要知道最高次項係數為 \( 1 \) ,所以有整數根;
設為 \( n \) ,那麼就是 \( (n-2010)(n-2012)(n-a)-48=0 \)
\( (n-2010)(n-2012)(n-a)=48 \)
注意到 \( (n-2010)-(n-2012)=2 \) ,去找可能的分解方式就可以求出。


第17題
如右圖設\( a>0 \),點\( P(3a,a^2) \)在Γ:\( \displaystyle y=\frac{1}{9}x^2 \)上,點\( Q \)在\( x \)軸正向上,且\( \overline{OP}=\overline{OQ} \),直線\( \overline{PQ} \)交\( y \)軸於\( R \)點,當\( P \)沿曲線Γ趨近於原點時,試求點\(  R \)的極限位置坐標為?

沒啥好想法,就硬作
\(\displaystyle Q(\sqrt{a^4+9a^2},0) \)
\(\displaystyle PQ: y-a^2=\frac{a^2}{3a-\sqrt{a^4+9a^2}}(x-3a)=\frac{a}{3-\sqrt{a^2+9}}(x-3a) \)
\(\displaystyle R(0,a^2+\frac{3a^2}{\sqrt{a^2+9}-3}) \)
\(\displaystyle \lim_{a \rightarrow 0} (a^2+\frac{3a^2}{\sqrt{a^2+9}-3}) \)
\(\displaystyle =\lim_{a \rightarrow 0} (a^2+\frac{3a^2(\sqrt{a^2+9}+3)}{a^2+9-9}) \)
\(\displaystyle =\lim_{a \rightarrow 0} (a^2+3(\sqrt{a^2+9}+3))=18 \)


第20題
\( F_1 \),\( F_2 \)為圖中雙曲線Γ的兩個焦點,\( ABCD \)為矩形,兩直線\( AC \),\( BD \)為Γ的漸近線,若有一點\( P \)到兩漸近線的距離都是8,且\( P \)不在貫軸上,又\( \overline{AB}=8 \),\( \overline{AD}=6 \),求\( \Delta PF_1 F_2 \)的面積?

漸近線是 \( 3y+4x=0, 3y-4x=0 \)

[ 本帖最後由 老王 於 2012-6-20 04:34 PM 編輯 ]
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

發新話題