發新話題
打印

101松山家商

1.
\( \matrix{& & & & 1 & & & & \cr
& & & 3 & & 3 & & & \cr
& & 5 & & 6 & & 5 & &  \cr
& 7 & & 11 & & 11 & & 7 & \cr
9 & & 18 & & 22 & & 18 & & 9} \)
如右圖所示,令第i行第k個數字為\( f(i,k) \),此圖中之規則為\( f(i,1)=2i-1=f(i,i) \),且\( f(i,k)=f(i-1,k-1)+f(i-1,k) \),其中\( 2 \le k \le i-1 \)。則\( f(i,3) \)之值為?
[解答]
\( \matrix{f(0) & & f(1) & & f(2) & & f(3) & & f(4) & & f(5) & & f(6) \cr
-3 & & 0 & & 2 & & 5 & & 11 & & 22 & & 40 \cr
& 3 & & 2 & & 3 & & 6 & & 11 & & 18 & \cr
& & -1 & & 1 & & 3 & & 5 & & 7 & & \cr
& & & 2 & & 2 & & 2  & & 2 & } \)
\( f(n)=-3 \times C_0^n+3 \times C_1^n-1 \times C_2^n+2 \times C_3^n \)
我的教甄準備之路 找出圖形的規律 有更多類題
https://math.pro/db/viewthread.php?tid=661&page=2#pid5274


6.
已知\( n \in N \),且n為6的倍數,則\( C_0^n+C_3^n+C_6^n+...+C_n^n \)之值為

求\( C_0^n+C_3^n+C_6^n+...+C_{3m-3}^n+C_{3m}^n \),其中\( 3m \)是不大於n的最大的3的倍數
神奇的複數 如何利用複數解中學數學難題P24
\( \displaystyle \frac{1}{3}(2^n+2cos\frac{n \pi}{3}) \)

觀察\( \displaystyle C_0^n+C_1^n+...+C_n^n=(C_0^n+C_3^n+C_6^n+...)+(C_1^n+C_4^n+...)+(C_2^n+C_5^n+...) \)
令\( \displaystyle A=C_0^n+C_3^n+C_6^n+...+C_{3k}^{3k} \),\( \displaystyle B=C_1^{3k}+C_4^{3k}+...+C_{3k-2}^{3k} \),\( k \in N \)
(1)比較A與B的大小關係。
(2)計算A值。
(100桃園縣現職教師高中聯招,https://math.pro/db/thread-1106-1-1.html)


計算與證明題
1.
設\( a>b>0 \),則橢圓\( \displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \)之內接三角形面積最大値為何?試證之。
老王的夢田
橢圓內接面積最大三角形(上),https://lyingheart6174.pixnet.net/blog/post/5122072
橢圓內接面積最大三角形(下),https://lyingheart6174.pixnet.net/blog/post/5122069

TOP

計算2.
△ABC中,D為\( \overline{BC} \)上任一點,\( ∠BAD=\alpha \),\( ∠CAD=\beta \),\( ∠ACD=\gamma \),\( ∠ABD=\delta \),\( ∠ADC=t \),試證:\( sin(\alpha+\beta)\cdot sin(\beta+\gamma)=sin \alpha \cdot sin \gamma+sin \beta \cdot sin \delta \)。
[提示]
我辛苦地翻書終於找到出處,想知道是如何證明的請自行查閱。
張景中,曹培生,從數學教育到教育數學p115

102.3.28補充
張景中,平面三角解題新思路p59也有這題


計算3.
已知\( a_0=1 \),且\( \displaystyle a_n=\frac{a_{n-1}}{1+a_{n-1}^2} \),其中n為任意正整數。試證:\( \displaystyle a_n \le \frac{3}{4 \sqrt{n}} \),\( n \in N \)。

\( \displaystyle a_{k+1}=\frac{a_k}{1+a_k^2}<\frac{\displaystyle \frac{3}{4 \sqrt{k}}}{1+\left( \displaystyle \frac{3}{4 \sqrt{k}} \right)^2}=\frac{12}{\displaystyle 16 \sqrt{k}+\frac{9}{\sqrt{k}}}<\frac{12}{16\sqrt{k+1}} \)
處,需再證:\( \displaystyle (16\sqrt{k}+\frac{9}{\sqrt{k}})-(16\sqrt{k+1})>0 \)
使用基本微分,即可證明

我覺得這步會有問題\( \displaystyle \frac{a_k}{1+a_k^2}<\frac{\frac{3}{4 \sqrt{k}}}{1+(\frac{3}{4 \sqrt{k}})^2} \),因為\( \displaystyle \frac{1}{1+a_k^2}>\frac{1}{1+(\frac{3}{4 \sqrt{k}})^2} \)

我的方法是
1.先證明\( a_n>0 \)(自己試著證明看看)
2.數學歸納法
\( \displaystyle \frac{1}{a_{n+1}^2}=(a_n+\frac{1}{a_n})^2=a_n^2+2+\frac{1}{a_n^2}>2+\frac{16n}{9}>\frac{16(n+1)}{9} \)
\( \displaystyle \frac{1}{a_{n+1}}>\frac{4 \sqrt{n+1}}{3} \)
因為前面有證明\( a_n \)為正數,所以開根號不會是負的
\( \displaystyle a_{n+1}<\frac{3}{4 \sqrt{n+1}} \)
(證明的過程等號不會成立)

TOP

發新話題