發新話題
打印

101明倫高中

引用:
原帖由 阿光 於 2012-6-14 03:14 PM 發表
想請教填充5,謝謝
分成3號開關的開與否
可以分成附件的圖來討論
3號是通的,如上圖
\(p{(1 - {(1 - p)^2})^2}\)
3號是不通的,如下圖
\((1 - p)(1 - {(1 - {p^2})^2})\)
加起來就是答案

#6
請參考許志農教授「戲說數學」
數學與猜想----數學期望值

附件

123.jpg (16.11 KB)

2012-6-14 17:18

123.jpg

TOP

引用:
原帖由 matric0830 於 2012-6-14 05:23 PM 發表
請問第14題如何證明?
如果你手邊沒有高中課本可以翻閱
google會是你的好朋友

TOP

P、Q點到在平面E上投影點分別為P',Q'
向量\( \displaystyle PP'=\left( - a\frac{{a{x_1} + b{y_1} + c{z_1} + d}}{{{a^2} + {b^2} + {c^2}}}, - b\frac{{a{x_1} + b{y_1} + c{z_1} + d}}{{{a^2} + {b^2} + {c^2}}}, - c\frac{{a{x_1} + b{y_1} + c{z_1} + d}}{{{a^2} + {b^2} + {c^2}}} \right) \)
向量\( \displaystyle QQ'=\left( - a\frac{{a{x_2} + b{y_2} + c{z_2} + d}}{{{a^2} + {b^2} + {c^2}}}, - b\frac{{a{x_2} + b{y_2} + c{z_2} + d}}{{{a^2} + {b^2} + {c^2}}}, - c\frac{{a{x_2} + b{y_2} + c{z_2} + d}}{{{a^2} + {b^2} + {c^2}}} \right) \)
由題目所給條件可知,向量PP'=k倍的向量QQ',其中k為負值,故兩向量為反向
即PQ異側

TOP

#4
設小水晶球半徑\(r\)
立方體的斜對角線\(8\sqrt 3  = 4 \cdot 2 + 2r\sqrt 3  + 2r\)
移項即可解出\(r\)
這題考出來算是秒殺題了
關鍵在斜對角線與內接球半徑的關係

110.2.28補充

更多類似問題https://math.pro/db/thread-1268-1-1.html

#8
設切點P為\((\sqrt t ,t)\),可算出切線交y軸於A點\((0, - t)\)
\(\Delta PAB = \frac{1}{2} \cdot 2t \cdot \sqrt t  = t\sqrt t \)
拋物線與y軸、\(\overline {PB} \)所夾面積\(\int_0^{\sqrt t } {(t - {x^2})} dx = \frac{2}{3}t\sqrt t \)
故所求比值為\(\frac{2}{3}\)

#10
\(f'(x) = 6{x^2} + 6ax + 6(a - 1) = 0\)解得\(x =  - 1,1 - a\)
若\(1 - a >  - 1\),即\(a < 2\)
\(f(1 - a) = 0\)解得\(a = 2 - \sqrt 3 \)

若\(1 - a <  - 1\),即\(a > 2\)
\(f(-1) = 0\),此時\(a\)無解
故答案只有一個

TOP

發新話題