發新話題
打印

100麗山高中第二次

第一題
弄懂bugmens老師的解法
還有解題過程中投影的想法再去找資料
有找到另一種解答
不過有很多記號

將定點\(P\)往球\(S\)投影的情形看成圓錐面\(\Omega\)
\(\Omega\)與球\(S\)的切圓記為圓\(C\)
包含圓C的平面記為\(E_1\)
將\(xy\)平面記為\(E_2\)
則題目中提到的投影形狀,就是平面\(E_2\)截圓錐面\(\Omega\)所得的橢圓\(\Gamma\)

令圓錐\(\Omega\)的頂角為\(\theta\),\(E_1\)與\(E_2\)所夾兩面角為\(\phi\)
由離心率的定義可得
\(e=\frac{c}{a}=\frac{\sin\phi}{\cos\theta}\)

以上是對一般平面截圓錐所得的橢圓都成立的。

針對這個題目
光源\( P(-1,0,4) \)和球心\( O(0,0,1) \)剛好都在\(xz\)平面上
把整個圖形投影到\(xz\)平面(附件圖)
頂角\(\theta\)和兩面角\(\phi\)都標記在上面
\(\sin\phi\)即\( \overrightarrow{PO}\)和\(\overrightarrow{OH}\)夾角餘弦值,得\(\frac{1}{\sqrt{10}}\)
\(\cos\theta\)則利用\( \overrightarrow{PO}\)和\(\overrightarrow{PF}\)去計算,得\(\frac{3}{\sqrt{10}}\)
所以離心率\(e=\frac{c}{a}=\frac{\sin\phi}{\cos\theta}=\frac{1}{3}\)

計算切線\(\overleftrightarrow{PE}: z=-\frac{4}{3} x+\frac{8}{3}\)
可得\(2a=\overline{EF}=3\),\(a=\frac{3}{2}\),由\(e=\frac{1}{3}\)得\(c=\frac{1}{2}\)
最後\(b^2=a^2-c^2\),\(b=\sqrt{2}\),短軸長\(2\sqrt{2}\)

[ 本帖最後由 fortheone 於 2012-2-19 01:26 PM 編輯 ]

附件

投影到xz.png (31.84 KB)

2012-2-19 13:26

投影到xz.png

TOP

發新話題