發新話題
打印

100豐原高中

第 4 題:一曲線 \(\Gamma :y=\sqrt{2ax}\) 上一點 \(P\),已知 \(\overline{PO}=1\),\(P\) 對 \(x\) 軸做垂足 \(H\),求被 \(\Gamma, \overline{PH}, x\) 軸圍住,繞 \(x\) 軸旋轉的旋轉體體積 \(V(a)\) 的最大值。

解答:

令 \(P(2at^2, 2at)\),其中 \(t>0\),

則 \(\overline{OP}^2=(2at^2)^2+(2at)^2=1\)

  \(\Rightarrow 4a^2t^4+4a^2t^2=1\)

\(\displaystyle V(a)=\int_0^{2at^2} \pi \left(\sqrt{2ax}\right)^2 dx\)

  \(\displaystyle =\pi ax^2\Big|_0^{2at^2}\)

  \(=4\pi a^3t^4\)

由算幾不等式,可得

  \(\displaystyle \frac{4a^2t^4+2a^2t^2+2a^2t^2}{3}\geq\sqrt[3]{4a^2t^4\cdot 2a^2t^2\cdot 2a^2t^2}\)

  \(\displaystyle \Leftrightarrow \frac{1}{3}\geq\sqrt[3]{16a^6t^8}\)

  \(\displaystyle \Leftrightarrow \frac{\sqrt{3}\pi}{9}\geq 4\pi a^3t^4\)

所以,\(V(a)\) 的最大值為 \(\displaystyle\frac{\sqrt{3}\pi}{9},\)

且此時解聯立方程式 \(\displaystyle 4a^2t^4=2a^2t^2\) 且 \(4a^2t^4+4a^2t^2=1\),

可得 \(\displaystyle a=\frac{1}{\sqrt{3}}, t=\frac{1}{\sqrt{2}}\)

註:如果有誤,希望網友能請不吝告知,感謝。

多喝水。

TOP

第 9 題:

\(\displaystyle S_n=\log_2\left(\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^{n-1}}\cos\frac{\pi}{2^n}\right)\)

 \(\displaystyle=\log_2\left(\frac{\displaystyle\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^{n-1}}\cdot 2\cos\frac{\pi}{2^n}\sin\frac{\pi}{2^n}}{\displaystyle2\sin\frac{\pi}{2^n}}\right)\)

 \(\displaystyle=\log_2\left(\frac{\displaystyle\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^{n-1}}\cdot \sin\frac{\pi}{2^{n-1}}}{\displaystyle2\sin\frac{\pi}{2^n}}\right)\)

 \(=\cdots\)

 \(\displaystyle=\log_2\left(\frac{\displaystyle\sin\frac{\pi}{2}}{\displaystyle2^{n-1}\sin\frac{\pi}{2^n}}\right)\)

 \(\displaystyle=\log_2\left(\frac{1}{\displaystyle2^{n-1}\sin\frac{\pi}{2^n}}\right)\)

 \(\displaystyle=\log_2\left(\frac{2}{\pi}\cdot\frac{\displaystyle\frac{\pi}{2^n}}{\displaystyle\sin\frac{\pi}{2^n}}\right)\)

因為 \(\log_2 x\) 為連續函數,且 \(\displaystyle\lim_{n\to\infty}\frac{\displaystyle\frac{\pi}{2^n}}{\displaystyle\sin\frac{\pi}{2^n}}=1\)

所以 \(\displaystyle\lim_{n\to\infty}S_n=\log_2\left(\frac{2}{\pi}\cdot\lim_{n\to\infty}\frac{\displaystyle\frac{\pi}{2^n}}{\displaystyle\sin\frac{\pi}{2^n}}\right)\)

      \(\displaystyle=\log_2\left(\frac{2}{\pi}\cdot1\right)\)

      \(=1-\log_2\pi.\)


註:如果有錯誤的地方,希望網友能請不吝告知,感謝。 ^__^

多喝水。

TOP

第 7 題:

若 \(n\) 為偶數,則 \(\displaystyle a_n=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\cdots+\left((n-1)^2-n^2\right)\)

           \(=(-3)+(-7)+\cdots+(-2n+1)\)

           \(\displaystyle =-\left(\frac{\frac{n}{2}\cdot(2n+2)}{2}\right)\)

           \(\displaystyle =-\frac{n(n+1)}{2}\)

若 \(n\) 為奇數,則 \(\displaystyle a_n=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\cdots+\left((n-2)^2-(n-1)^2\right)+n^2\)

           \(\displaystyle =-\frac{(n-1)n}{2}+n^2\)

           \(\displaystyle =\frac{n(n+1)}{2}\)

所以 \(\displaystyle a_n=(-1)^{n+1}\cdot\frac{n(n+1)}{2}\)

故,

\(\displaystyle \sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{a_n}=\sum_{n=1}^{\infty}\frac{2}{n(n+1)}\)

       \(\displaystyle =2\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

       \(=2.\)

註:如果有錯誤的地方,希望網友能請不吝告知,感謝。 ^__^

多喝水。

TOP

第 8 題:
引用:
原帖由 iamcfg 於 2011-5-29 11:20 PM 發表
第8題提供一點idea  我沒有詳細作出來

假設 \(\displaystyle{z= \frac{1}{2}( \cos(x)+i \sin(x))}\)

此題會是 \(z\) 的無窮等比級數的虛部

所以 \(\displaystyle{a=\frac{z}{1-z}}\)  算完再找虛部 ...
令 \(\displaystyle z=\frac{1}{2}\left(\cos x+i\sin x\right)\),

則 \(\displaystyle z+z^2+z^3+\cdots=\frac{z}{1-z}=\frac{\frac{1}{2}\left(\cos x+i\sin x\right)}{1-\frac{1}{2}\left(\cos x+i\sin x\right)}\)

          \(\displaystyle =\frac{\left(\cos x+i\sin x\right)}{2-\cos x-i \sin x}\)

          \(\displaystyle =\frac{\left(\cos x+i\sin x\right)}{\left(2-\cos x\right)^2+\sin^2 x}\cdot\left(2-\cos x+i\sin x\right)\)


題目所求即為 \(z+z^2+z^3+\cdots\) 的虛部 \(\displaystyle =\frac{\cos x\sin x+\sin x\left(2-\cos x\right)}{\left(2-\cos x\right)^2+\sin^2 x}\)

                   \(\displaystyle =\frac{2\sin x}{5-4\cos x}.\)


註:感謝 iamcfg 提供這個超讚的方法!

多喝水。

TOP

回復 9# aonzoe 的帖子

令 \(\displaystyle k=\frac{2\sin x}{5-4\cos x}\)

則 \(\displaystyle 2\sin x+4k\cos x=5k\)

 \(\displaystyle \Rightarrow \left|5k\right|\leq\sqrt{2^2+\left(4k\right)^2}\)

  \(\displaystyle \Rightarrow \frac{-2}{3}\leq k\leq\frac{2}{3}\)

所以 \(\displaystyle \frac{-2}{3}\leq \lim_{n\to\infty} a_n\leq\frac{2}{3}\)

多喝水。

TOP

第 6 題:

設拋物線方程式為 \(y=ax^2+bx+c\)

拋物線通過 \((-1,-1), (2,2)\)  帶入,

可得 \(-1=a-b+c, 2=4a+2b+c\)

\(\Rightarrow b=1-a, c=-2a\)

「拋物線與 \(x\) 軸所截長度」的平方 \(\displaystyle = \left(-\frac{b}{a}\right)^2-4\left(\frac{c}{a}\right)\)

                 \(\displaystyle = \left(1-\frac{1}{a}\right)^2 +8\)

                 \(\geq 8\)

當 \(a=1\) 時,拋物線與 \(x\) 軸所截長度有最小值為 \(2\sqrt{2}\)

且此時 \(b=0,c=-2\),拋物線方程式為 \(y=x^2-2\)

多喝水。

TOP

第 5 題:

設 \(\Gamma\) 上的動點 \(\displaystyle P(t,t^2-\frac{1}{2})\)

則過 \(P\) 點的法線方程式為

      \(\displaystyle y-\left(t^2-\frac{1}{2}\right)=-\frac{1}{2t}\left(x-t\right)\)

通過 \((a,3)\) 帶入,可得 \(t\) 的一元三次方程式 \(2t^3-6t-a=0\)

依題意此 \(t\) 的一元三次方程式應該有三實根,

令 \(f(t)=2t^3-6t-a\)

則 \(f'(t)=0\Rightarrow t=\pm 1\)

因為 \(f(t)=0\) 有三實根,

所以




\(\Rightarrow f(-1)>0\) 且 \(f(1)<0\)

\(\Rightarrow -4<a<4.\)

多喝水。

TOP

第 1 題:

設球半徑為 \(r\)

則 \(r\cdot\sqrt{3} + 4r+r\cdot\sqrt{3}=10\cdot\sqrt{3}\)

\(\displaystyle\Rightarrow r=10\sqrt{3}-15.\)




((我不太會畫立體圖,所以我用文字說明好了!))

設上面四顆球為 \(A,B,C,D\),

 對應下面的四顆球為 \(E,F,G,H\),

 最中間球為 \(I\),

則因為 \(A,I,G\) 的球心與此正立方體對角線上的頂點會共線,

 且 \(A\) 的球心到它最接近的正立方體頂點的距離=\(G\) 的球心到它最接近的正立方體頂點的距離=\(r\sqrt{3}\),

  以及 \(\overline{AG}=4r\),

 所以此正立方體的對角線長為 \(r\cdot\sqrt{3} + 4r+r\cdot\sqrt{3}.\)



註:如果以上想法有錯誤的地方,希望高手可以不吝告知,感謝!

多喝水。

TOP

回復 20# waitpub 的帖子

設拋物線 \(y=ax^2+bx+c\) 與 \(x\) 軸兩交點為 \((x_1,0), (x_2,0)\)



\(\displaystyle \left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{-b}{a}\right)^2-\frac{c}{a}=\frac{b^2-4ac}{a^2}\)

或是可以如下,

\(\displaystyle \left(x_1-x_2\right)^2=\left(\frac{-b+\sqrt{b^2-4ac}}{2a}-\frac{-b-\sqrt{b^2-4ac}}{2a}\right)^2=\left(2\cdot\frac{\sqrt{b^2-4ac}}{2a}\right)^2=\frac{b^2-4ac}{a^2}\)

多喝水。

TOP

發新話題