發新話題
打印

2010TRML

推到噗浪
推到臉書
若\( a,b,c,d \)為等差數列,且實數\( x,y,z,w \)滿足\( \cases{a+b+c+d=50 \cr x+y+z+w=10 \cr ax+by+cz+dw=100} \),則\( aw+bz+cy+dx= \)?(2010TRML團體賽)
[解答]
假設\( a_1 \)為首項,\( t \)為公差,\( a=a_1-3t \),\( b=a_1-t \),\( c=a_1+t \),\( d=a_1+3t \)

\( a+b+c+d=50 \),\( (a_1-3t)+(a_1-t)+(a_1+t)+(a_1+3t)=50 \),\( \displaystyle a_1=\frac{25}{2} \)

\( ax+by+cz+dw=100 \),\( (a_1-3t)x+(a_1-t)y+(a_1+t)z+(a_1+3t)w=100 \),
\( a_1(x+y+z+w)+(-3tx-ty+tz+3tw)=100 \) , \( \displaystyle a_1=\frac{25}{2} \)代入得\( 3tx+ty-tz-3tw=25 \)

\( aw+bz+cy+dx=(a_1-3t)w+(a_1-t)z+(a_1+t)y+(a_1+3t)x=(3tx+ty-tz-3tw)+a_1(w+z+y+x)=150 \)

[ 本帖最後由 bugmens 於 2011-2-26 09:16 PM 編輯 ]

TOP

發新話題