16 12
發新話題
打印

99中興高中

推到噗浪
推到臉書
引用:
原帖由 peter579 於 2010-7-25 08:52 PM 發表
大家都沒有上來討論題目…。
沒看到有人對題目有提問呀?

TOP

第 2 題:
若方程組\(\cases{mx-y+2=0 \cr |\;x|\;+|\;y|\;=1}\)有解,則實數\(m\)之範圍為   
[解答]
先畫出 \(|x|+|y|=1\) 的圖形,

\(mx-y+2=0\) 是通過 \((0,2)\) 且斜率為 \(m\) 的直線,

兩者圖形有交點,可得 \(m\) 的範圍。




第 3 題
求\(3^{2009}\)除以1000之餘數為   
[解答]
\(3^{2009}=3\times3^{2008}=3\times\left(10-1\right)^{1004}\) 再用二項式定理展開,千位以上都不管(如果是負的再向前面借 1000 來扣),就有答案了。



第 10 題:
方程式\(x^6+x^4+x^2+1=0\)的六個根在高斯平面上圍成六邊形,求此六邊形的面積為   
[解答]
方程式乘上 \(x^2-1\),可得 \(x^8=1\),此八個根畫在複數平面上,

扣掉 \(1,-1\) 之後的六個根,即可以算出面積。



第 11 題:
將一個正五邊形\(ABCDE\)的部份面積分別記為\(x,y,z\),已知\(x=1\),求實數序組\((y,x+5y+5z)=\)   
[解答]
(沒蝦咪好想法,只好來醜陋的==)
隨便假設一個邊長為 \(1\),因為都是特殊角(角度都跟 \(18^\circ\) 有關),

所以各色塊的面積都可求得,

然後再把算出來的面積,乘以常數倍,伸縮到最中間的小正五邊形面積為 \(1\)。

所以要求的答案就可以跟著找到了。




第 13 題:
設平面\(x+y+z=1\)與球面\(x^2+y^2+z^2=4\)相交部分為圓\(S\)。已知平面\(2x+2y+z=1\)與圓\(S\)交於\(P\)、\(Q\)兩點,則\(\overline{PQ}\)之長為   
[解答]
\(P,Q\) 同時滿足題目給的三個方程式,由兩平面的交線得參數式,

再帶入球面,可得 \(P,Q\) 兩點坐標。




第 15 題:
點\(P(4,3,1)\),點\(Q\)為圓\(\cases{x^2+(y-1)^2+(z-5)^2=13 \cr x+2y+2z=3}\)上之動點,求線段長\(\overline{PQ}\)之最小值為   。(最簡分數)
[解答]
先分別求出 \(P\) 與 \((0,1,5)\) 到平面 \(x+2y+2z=3\) 的投影點 \(M\) 與 \(O\),然後求圓半徑 \(r\),則 \(\sqrt{MP^2+\left(MO-r\right)^2}\) 即為所求。





第 30 題:
\(2x^3-3x^2-12x+k=0\)有二相異負根及一正根,求實數\(k\)範圍為   
[解答]
令 \(f(x)=2x^3-3x^2-12x+k\) 可得 \(f\,'(x)=0\) 的兩根為 \(-1,2\)

因為 \(f(x)=0\) 有三相異根,所以 \(f(-1)>0,\,f(2)<0\),

因為有兩負根一正根,所以 \(f(0)<0\),合併三者可得 \(k\) 的範圍。



第 26 題答案是給 \(\displaystyle-\frac{1}{9}\) 呀。:-)




第 30 題:回歸直線方程式為 \(\displaystyle y=\frac{42}{5}+\frac{26}{25}x\),以 \(x=75\) 帶入可得 \(y=86.4\)。
(官方答案給的回歸直線方程式,有一個分子打錯了。)




夜深了,隔天還要早起,先睡去,

如果有錯誤的地方,希望能不吝提醒,感謝。 :)

TOP

第 22 題:
已知\(\displaystyle \alpha,\beta \in (0,\frac{\pi}{2})\),則\(y=(\sqrt{6}sin\alpha-3tan\beta)^2+(\sqrt{6}cos\alpha-3cot\beta)^2\)的最小值為   
[解答]
令 \(P(\sqrt{6}\sin\alpha, \sqrt{6}\cos\alpha)\) 且 \(Q(3\tan\beta, 3\cot\beta)\),則

\(P\) 落在第一象限的 \(x^2+y^2=6\) 的圓周上,\(Q\) 落在第一象限的 \(xy=9\) 的圖形上,

畫圖可以發現,當 \(P(\sqrt{3}, \sqrt{3})\) 且 \(Q(3,3)\) 時, \(\overline{PQ}\) 的最小值為 \(3\sqrt{2}-\sqrt{6}.\)

所求為 \(\overline{PQ}^2\) 的最小值 \(=\left(3\sqrt{2}-\sqrt{6}\right)^2=24-12\sqrt{3}.\)



感謝 peter579 老師提醒小錯誤,已修正。

TOP

第 1 題:一道光線通過原點 \(O\) 後,沿著 \(y\) 軸射向直線 \(L:\, x-3y+3=0\),碰到直線 \(L\) 後,假設光線依光學原理反射後,通過 \(x\) 軸上的點坐標 \((a, 0)\),求實數 \(a\) 值?

解答:

將原點對稱直線 \(L\) 可得點 \(A\),

直線 \(L\) 與 \(y\) 軸交於 \(B(0,1)\),

直線 \(\overleftrightarrow{AB}\) 與 \(x\) 軸的交點即為所求。






第 25 題:已知豬得口啼疫的比率為 \(0.05\),今有一口蹄疫檢驗,對健康的豬能作出正確檢驗的機率為 \(0.92\),對罹患口蹄疫的豬能作出正確檢驗的機率為 \(0.80\),今有一豬作此檢驗,求此豬檢驗為健康,但其確實罹病的機率為____ (最簡分數)。

解答:
        ┌驗出口蹄疫 0.8
 豬確實得口蹄疫┤
┌0.05     └未驗出口蹄疫 0.2 (○)

└0.95      ┌驗出口蹄疫 0.08
 豬確實未得口蹄疫┤
         └未驗出口蹄疫 0.92(●)

所求 \(\displaystyle=\frac{0.05\times0.2}{0.05\times0.2+0.95\times0.92}=\frac{5}{442}.\)





第 29 題:設 \(\displaystyle f(x)=\frac{(x-1)(x-2)(x-3)(x-4)}{4}\),求導函數 \(f'(1)=\)_______。(最簡分數)

lovesun 算的答案 \(\displaystyle-\frac{3}{2}\) 沒錯,看來是官方答案給錯了。

TOP

第 20 題:
三個\(8cm \times 8cm\)的正方形都被連接兩條鄰邊中點的直線分成\(A\)、\(B\)兩片,並將這六片粘在另一個正六邊形的邊上(接縫部分不計),然後折成一個多面體。求此多面體的體積為   \(cm^3\)。
[解答]
我的做法很麻煩,期待有人能提供更快的作法。



先把拼起來的立體圖形的高 \(\displaystyle\sqrt{\left(6\sqrt{2}\right)^2-\left(2\sqrt{6}\right)^2}=4\sqrt{3}\) 算出來,

然後把三個缺掉的小三角錐補上,

三個多補上的小三角錐的底面是邊長為 \(4\sqrt{2}\) 的小正三角形,

補上之後整個大三角錐的底面變成是邊長為 \(12\sqrt{2}\) 的大正三角形,

然後算出大三角錐由上方頂點到底面的頂點之稜長 \(12\),

最算出三個小三角錐由上方頂點到底面頂點的稜長是 \(4\)、高是 \(\displaystyle\frac{4\sqrt{3}}{3}\),

最後所求體積 = 大三角錐體積 - 三個小三角錐體積

      \(\displaystyle=\frac{1}{3}\times\frac{\sqrt{3}}{4}\left(12\sqrt{2}\right)^2\times4\sqrt{3}-3\times\left(\frac{1}{3}\times\frac{\sqrt{3}}{4}\left(4\sqrt{2}\right)^2\times\frac{4\sqrt{3}}{3}\right)\)

      \(\displaystyle=288-32\)

      \(\displaystyle=256.\)



Note: 算完之後,剛剛才發現三個小三角錐剛好是大三角錐邊長縮小為原來的 \(\displaystyle \frac{1}{3}\) 倍。:-P

TOP

引用:
原帖由 老王 於 2010-7-31 09:16 PM 發表
要能看穿這個把戲,答案就出來了
8*8*8/2=256

http://www.facebook.com/photo.php?pid=452238&id=100000162065713
真神人也!
引用:
原帖由 Fermat 於 2010-7-31 07:09 PM 發表
題外話
請問瑋岳兄是否有參加2010高中教師研習(高大應數森棚教官, 週日場)?
我當天看到一位很像您
可是研習名單裡卻沒見到
我沒有去耶,之前游教授在台中場的時間也跟我的進修時間衝到,

想去可是卻沒機會去,可惜。

TOP

第 17 題

題目:將 \(8\) 件不同的物品全部分給甲、乙、丙三人,若其中一人至少得 \(1\) 件,一人至少得 \(2\) 件,另一人至少得 \(3\) 件,則分法有 \(N\) 種。將相同的蘋果 \(4\) 個及相同的梨子 \(6\) 個,全部分給丁、戊、己三人,若每人至少得 \(1\) 個(不論是蘋果或梨子),則分法有 \(M\) 種。求 \(N+M\) 之值=_______。  

解答:

\(\displaystyle N = n(\mbox{每人至少得一件}) - n(\mbox{某兩人各得一件,第三人獨得六件})\)

 \(\displaystyle = \left(3^8-C^3_1\times2^8 + C^3_2\times1\right) - \left(C^3_1\times\frac{8!}{1!1!6!}\right)\)

 \(\displaystyle = 5628.\)

\(\displaystyle M = H_4^3 H_6^3 - C^3_1 H_4^2 H_6^2 + C^3_2 H_4^1 H_6^1\)
    (↑ 這是排容原理)

 \(\displaystyle = 318.\)





第 21 題

題目:若坐標平面上有一橢圓與 \(x\) 軸相切,且其焦點為 \(F_1(2,1)\) 與 \(F_2(6,2)\),則此橢圓的短軸長為_______。

解答:

\(\displaystyle \overline{F_1F_2} = \sqrt{17} = 2c.\)

將 \(\displaystyle F_1\) 對稱 \(\displaystyle x\) 軸得 \(\displaystyle F_1'(2,-1)\),

\(\displaystyle \overline{F_1'F_2} = 5 =2a.\)
(↑ 畫張圖來看看,想想光學性質就知道了)

\(\displaystyle \Rightarrow 2b=\sqrt{\left(2a\right)^2-\left(2c\right)^2}=2\sqrt{2}.\)




第 27 題

題目:設甲箱內有 \(2\) 白球,乙箱內有 \(3\) 紅球,現在每次各自箱中隨機取一個球交換,若經過長期達穩定狀態後,求有 \(2\) 紅球在甲箱內的機率=_______。(最簡分數)

解答:

轉移矩陣 \(\displaystyle A=\left[\begin{array}{ccc}\displaystyle0&\frac{1}{6}&0\\1&\frac{1}{2}&\frac{2}{3}\\0&\frac{1}{3}&\frac{1}{3}\end{array}\right]\)

其中上方由左至右分別表示的狀態是甲箱中有兩白、一白一紅、兩紅

轉移成左方的狀態由上而下分別是是甲箱中有兩白、一白一紅、兩紅

(↑ 矩陣裏面的數字要自己算一下喔~算起來很快的!)

再由 \(\displaystyle A\left[\begin{array}{c}x\\y\\x\end{array}\right]=\left[\begin{array}{c}x\\y\\x\end{array}\right]\) 且 \(\displaystyle x+y+z=1\),

可解得 \(\displaystyle x=\frac{1}{10}, y=\frac{3}{5}, z=\frac{3}{10}.\)

TOP

回復 29# kittyyaya 的帖子

引用:
原帖由 kittyyaya 於 2010-9-12 12:01 AM 發表
請問如何看出 ?
老王老師的 facebook 連結裡,有張漂亮的圖!

TOP

原題目上面尖尖、下面是六邊形,

將其複製兩份,將這兩份的〝六邊形的底面相接〞,

就會是老王老師所繪圖中的樣子,

注意看老王老師所繪的圖,就是兩塊原題目的圖形接起來,

連接處就是就是圖中那個有顏色的六邊形,

你可以仔細檢查一下圖中各個三角形的邊長是否符合原題目。

^_^

TOP

回復 36# waitpub 的帖子

第 9 題化二倍角之後,應該是 \(1-2\cos 2x+2\sqrt{3} \sin 2x,\)

而且因為 \(x\) 有範圍限制,所以再來要用疊合慢慢做~

TOP

 16 12
發新話題