回復 61# clovev 的帖子
填充第 13 題:
若\(x,y,z\)為整數,\(0\le x\le 45\),\(1\le y\le 47\),\(2\le z\le 49\),則滿足\(x+y+z=50\)的解\((x,y,z)\)共有 組。
[解答]
令 \(y\,'=y-1, z\,'=z-2\) 則
\(x+y\,'+z\,'=47\) 且 \(0\leq x\leq45, 0\leq y\,'\leq 46, 0\leq z\,'\leq 47\)
所求=(47顆相同球任意分給 \(x,y\,',z\,'\) 三個箱子)- (\(x\) 爆掉) - (\(y\,'\) 爆掉)
[註:\(z\,'\) 肚量很大~可以獨自吃到 \(47\) 顆球沒問題,所以絕對不會爆掉。]
=(47顆相同球任意分給 \(x,y\,',z\,'\) 三個箱子)- (\(x\) 因為吃了 \(46\) 顆以上的球,所以爆掉) - (\(y\,'\) 因為吃了 \(47\) 顆球所以爆掉)
= \(H_{47}^3 - H_1^3-1\)
=\(1176-3-1=1172\)