40 1234
發新話題
打印

99桃園縣現職教師高中聯招

回復 20# weiye 的帖子

非選 6
「以及同底等高的三角形會等面積」,這句話是否只有在平行即情況 2 有用

若 \( \overline{AB} \) 和 \( \overline{CD} \) 不平行,同底等高的三角形在哪裡?

實際若不管那到圓,純用代數的角度來看就是 \( \overline{AB} d_{AB} = \overline{CD} d_{CD} \)

換成方程式,就像解角平分線距離一樣,有兩條,一條是 weiye 老師說的 \( \overleftrightarrow{OF} \)

另一條,有時候在圓外,有時和圓相交。如下圖是相交之情形



圖中 \( \overline{OO'} \) 與 \( \overline{AB} \) 平行,且 \( H  \) 為 \(  \overline{OO'} \) 中點

\( \overleftrightarrow{O'F} \) 就是另一條直線,為什麼呢?留著當習題好了

也就是說,其實 \( P \) 圖形可能是兩條弦

非選沒有公佈答案,另外一個情況,不知道是否是出題者預料中,還是遺漏?
網頁方程式編輯 imatheq

TOP

想問一下非選第二題,謝謝。

TOP

回復 32# meifang 的帖子

非選第 2 題:

因為 \(P(0\leq Z\leq 0.675)=0.25\),所以 \(\displaystyle P(Z\leq -0.675)=\frac{1-2\times P\left(0\leq Z\leq 0.675\right)}{2}=0.25\)



且因為第一四分位數為 40,標準差為 4,若令平均數為 \(\overline{X}\),則

\(\displaystyle \Rightarrow \frac{\overline{X}-40}{4}=0.675\)

\(\Rightarrow \overline{X}=42.7\)

多喝水。

TOP

回復 1# bugmens 的帖子

請教填充第1題,
北一女的聯結看不太懂(題目:6a+9b+20c=k,a,b,c都是非負整數)
,為何要做以下列式:
6(a+2)+9(b+1)+20(c−1)=k+1
6a+9(b−2)+20(c+1)=k+2
6(a−1)+9(b+1)+20c=k+3
6(a+1)+9(b+2)+20(c−1)=k+4
6(a−1)+9(b−1)+20(c+1)=k+5
6(a+1)+9b+20c=k+6

感謝。

TOP

回復 34# mathca 的帖子

就是把 \( n \geq k \) 的所有情況,湊出來。

其中有 \( a-1,b-2,c-1 \),所以在 \( k = 6\times 1+9\times2+20\times1 = 44 \)

在 \( n\geq 44 \) 的情況,都可以由這些式子,去找出 \( a,b,c \)

而論證 \( n \geq 44 \) 時,皆可被表示成 \( 6a+9b+20c \) 之形式( \( a,b,c \) 非負整數)

所以 44 是合的,但題目中要找的符合這樣性質的最小 \( n \)

故要確定 43 是不能被湊出
網頁方程式編輯 imatheq

TOP

回復 35# tsusy 的帖子

經由寸絲老師解釋後,以下自己理解部分,
case1:6a+9b+20c=k..........................  a、b、c必須大於等於0
case2:6(a+2)+9(b+1)+20(c−1)=k+1 ....... a+2、b+1、c-1必須大於等於0
case3:6a+9(b−2)+20(c+1)=k+2 ............ a、b-2、c+1必須大於等於0
case4:6(a−1)+9(b+1)+20c=k+3 ........... a-1、b+1、c必須大於等於0
case5:6(a+1)+9(b+2)+20(c−1)=k+4 ..... a+1、b+2、c-1必須大於等於0
case6:6(a−1)+9(b−1)+20(c+1)=k+5 ..... a-1、b-1、c+1必須大於等於0
case7:6(a+1)+9b+20c=k+6................ a+1、b、c必須大於等於0
結論:a-1、b-2、c-1必須大於等於零,所以a至少取1、b至少取2、c至少取1,
不知是否正確。

TOP

回復 36# mathca 的帖子

其實只有 6 種情況,或說是 6 種預備式。

再從 44 出發,使用 6 個式子可以造出 45~ 50
從 50 出發,使用 6 個式子可以造出 50~ 56
... 就可以造成所有 \( n\geq 44 \)

另外 43 是必須好好確認的
網頁方程式編輯 imatheq

TOP

回復 30# weiye 的帖子

非選擇第3題
- (f(1))^3 = 10-75+125-1+5=64  => f(1)=-4
微分後,
4x^3 *f(x) + (x^4-1) * f ' (x) -  3*(f(x))^2 * f ' (x) = 50x^4 -300x^3 +375x^2 -2x +5
4f(1) + 0 -  48* f ' (1) =50-300+375-2+5=128
48* f ' (1) = -144
f ' (1) = - 3 請問答案正確?

[ 本帖最後由 mathca 於 2016-1-8 09:47 AM 編輯 ]

TOP

回復 38# mathca 的帖子

\(f'\left( 1 \right)=-3\)沒錯,寸絲兄的筆記中給的答案是\(\frac{5}{6}\),應是誤植

[ 本帖最後由 thepiano 於 2016-1-8 10:59 AM 編輯 ]

TOP

回復 39# thepiano 的帖子

感謝。

TOP

 40 1234
發新話題