回復 34# arend 的帖子
填充2
坐標空間中,圓\(O\)是平面\(y=z\)上以原點\((0,0,0)\)為圓心的單位圓。若點\(P\)的坐標為\((4,4,12)\),而點\(X\)是圓\(0\)上的動點,則\(\overline{PX}\)的最大值為 。
[解]
令\(P\)到平面\(y-z=0\)的投影點為\(P'\)
\(\Rightarrow P'=\cases{\displaystyle x=4-0 \times \frac{4-12}{1^2+1^2}=4 \cr y=4-1 \times \frac{4-12}{1^2+1^2}=8 \cr z=12-(-1)\times \frac{4-12}{1^2+1^2}=8}\)
\( \overline{PP'}=\sqrt{0^2+4^2+4^2}=4\sqrt{2} \),\(\overline{OP'}=\sqrt{4^2+8^2+8^2}=12\)
\(\overline{PX}\)最大值\(=\sqrt{(4\sqrt{2})^2+(12+1)^2}=\sqrt{201}\)
附件
-
填充2.gif
(5.2 KB)
-
2018-7-8 10:18