回復 31# idontnow90 的帖子
解答的第二部分的第一行:\(\displaystyle f(k)=2+\frac{1}{k}\) 僅限「\(k=1,2,3,\cdots,2011\)」時,
當 \(k=2012\) 時, \(\displaystyle f(2012)=\frac{2013}{1006}=2+\frac{1}{1006}=\left(2+\frac{1}{2012}\right)+\frac{1}{2012}\)
因此,後面的 \(\Sigma\) 會少加了 \(\displaystyle C^{2012}_{2011}(-1)^{2011}\cdot\frac{1}{2012}=-1.\)
亦即,所求=\(\displaystyle \sum_{k=0}^{2011}C^{2012}_k(-1)^k f(k+1)=\left[\sum_{k=0}^{2011}C^{2012}_k(-1)^k \left(2+\frac{1}{k+1}\right)\right]+(-1)\)
另外,不知您所說的「還沒用到條件」是指哪個條件呢?