回復 2# weiye 的帖子
這是 100南港高工的考題
順帶補充其它類題
解函數方程 \( f(x)+\log x\cdot f(\frac{1}{x})=2^{x} \),其中 \(x>0\)。 (100家齊女中)
設函數 \(f(x)\) 滿足 \(f(x)-2f(\frac{1}{x})=x\),則 \(f(x)=\underline{\qquad\qquad}\) 。 (99安樂高中2招)
設 \(f(x)\) 為實函數且滿足 \(3f(x)-2f(\frac{1}{x})-\frac{5}{x}=0\) ,則 \(f^{2}(x)\) 的最小值為 \(\underline{\qquad\qquad} \)。 (99師大附中)
已知 \( x \) 為不等於零的正實數且滿足 \( 3f(5x^{2})+2f(\frac{1}{5x^{2}})=25x \),求 \( f(5) \) 之值。(100台南區)
若 \( f(x) \) 是一實函數,滿足 \( f(0)=1 \) 且 \( 2f(x)-f(\frac{1}{x})+\frac{1}{x}=0 \),其中 \( x\neq0 \),則 \( |f(x)| \) 的最小值為 \( \underline{\qquad} \)。 (98三區)
[ 本帖最後由 tsusy 於 2013-4-16 08:22 PM 編輯 ]