發新話題
打印

111家齊高中

請教第6、8題

TOP

引用:
原帖由 Harris 於 2022-4-22 11:12 發表
請問老師11題如何得到-1這個答案?我只有算出k=3,是因為還有其他k值嗎?
鋼琴老師已回~
補充一下 這題其實是國中的資優題
但如果是給國中生考,另一個 a+b+c=0的情況可能就會有問題
因為此時a,b,c會出現複數解

TOP

回復 22# Ellipse 的帖子

謝謝兩位老師的回應

另外回覆21樓:
第6題
實係數多項方程式\(f(x)=x^4+2(k-2)x^3-7(k-1)x^2+px+q=0\),已知\(2+i\)為其複數根,另有兩根為實數,求\(pq\)的最小值為   
[解答]
將原多項式除以(x^2-4x+5)商式為(x^2+2kx+(k+2)),展開得到p=6k-8,q=5k+10
搭配上兩實根,剩下就是二次函數配方法而已囉

第8題
坐標平面上,\(C\):\(x^2+y^2=1\),一定點\(A(-2,0)\),\(Q\)為圓\(C\)上的動點,以\(Q\)為中心,將\(A\)點逆時針旋轉90度得\(P\)點,求動點\(P\)的軌跡方程式為   
[解答]
設Q(cos,sin),AQ向量和PQ向量垂直且等長
P點參數式(cos+sin, sin-cos-2),消掉參數式就是答案囉

TOP

回復 23# Harris 的帖子

謝謝老師解惑

TOP

第四題
設有一張長方形的紙\(ABCD\),已知\(\overline{AB}=8\),\(\overline{BC}=4\),通過對角線\(\overline{BD}\)的中點\(M\)且垂直於\(\overline{BD}\)的直線分別交\(\overline{AB}\)與\(\overline{CD}\)於\(E\)、\(F\)兩點,當以\(\overline{EF}\)為折線把紙\(ABCD\)折起來,使得平面\(AEFD\)垂直於平面\(EBCF\),此時若\(\angle CFD=\theta\),\(0<\theta<\pi\),求\(cos\theta=\)   
[解答]
另一個做法
先求得 線段\(AE=3\),線段\(BM=2\sqrt{5}\)
接著座標化得\(B(4,2,2\sqrt{5}),E(3,0,0) ,A(0,0,0)\)
最後因為向量\(EB\)平行 向量\(FC\)
利用 向量\(EA\)與 向量\(EB\) 求得

TOP

回覆 1# Superconan 的帖子

請問第13題
印象中好像某年考過類似的題目?

TOP

回覆 26# 新手老師 的帖子

第 13 題
已知一個圓內接八邊形\(P_1P_2P_3P_4P_5P_6P_7P_8\),若\(\overline{P_1P_2}=\overline{P_3P_4}=\overline{P_5P_6}=\overline{P_7P_8}=3\),且\(\overline{P_2P_3}=\overline{P_4P_5}=\overline{P_6P_7}=\overline{P_8P_1}=4\),則此八邊形面積=   
[解答]
把八邊形切成全等的 4 塊
每塊四個邊長分別是 3、4、r、r,其中 r 是半徑
r 和 r 這兩邊的夾角是 90 度,3 和 4 這兩邊的夾角是 135 度
再搭配餘弦定理就可以了

TOP

請問第一題

空間中一點\(P(4,3,1)\),\(C\):\(\cases{x^2+(y-1)^2+(z-5)^2=13\cr x+2y+2z=3}\),\(Q\in C\),求\(\overline{PQ}\)之最大值為[u]   [/u]

版上老師好   請問第一題不知道哪裡算錯了

過程如附件

附件

249819.jpg (84.82 KB)

2022-5-30 20:33

249819.jpg

TOP

回覆 28# anyway13 的帖子

\(Q_1\)在平面\(x+2y+2z=3\)上,但是需要檢查一下\(Q_1\)有沒有在圓上(在球上又在平面上的那圈)

TOP

回覆 28# anyway13 的帖子

填充第 1 題
空間中一點\(P(4,3,1)\),\(C\):\(\cases{x^2+(y-1)^2+(z-5)^2=13\cr x+2y+2z=3}\),\(Q\in C\),求\(\overline{PQ}\)之最大值為   
[解答]
這題至少有 3 個學校考過,不過都是求最小值
家齊改成求最大值

求出 P(4,3,1) 在平面 x + 2y + 2z = 3 的投影點 P'(3,1,-1)
平面和球的交圓之圓心為 O(-1,-1,3),半徑 2

PQ 之最大值 = √[PP'^2 + (OP' + 2)^2] = √73

TOP

發新話題