第四題
設有一張長方形的紙\(ABCD\),已知\(\overline{AB}=8\),\(\overline{BC}=4\),通過對角線\(\overline{BD}\)的中點\(M\)且垂直於\(\overline{BD}\)的直線分別交\(\overline{AB}\)與\(\overline{CD}\)於\(E\)、\(F\)兩點,當以\(\overline{EF}\)為折線把紙\(ABCD\)折起來,使得平面\(AEFD\)垂直於平面\(EBCF\),此時若\(\angle CFD=\theta\),\(0<\theta<\pi\),求\(cos\theta=\) 。
[解答]
另一個做法
先求得 線段\(AE=3\),線段\(BM=2\sqrt{5}\)
接著座標化得\(B(4,2,2\sqrt{5}),E(3,0,0) ,A(0,0,0)\)
最後因為向量\(EB\)平行 向量\(FC\)
利用 向量\(EA\)與 向量\(EB\) 求得