回復 19# jasonmv6124 的帖子
第 11 題
\(x,y\)為實數且\(x>y\),若\(x+y=x^2+y^2\),則當\(x+y=n\)時,\(x^4-y^4\)有最大值\(M\),求數對\((n,M)=\) 。
[解答]
\(\begin{align}
& {{x}^{2}}+{{y}^{2}}=x+y=n \\
& xy=\frac{{{\left( x+y \right)}^{2}}-\left( {{x}^{2}}+{{y}^{2}} \right)}{2}=\frac{{{n}^{2}}-n}{2} \\
& {{\left( x-y \right)}^{2}}={{\left( x+y \right)}^{2}}-4xy={{n}^{2}}-4\times \frac{{{n}^{2}}-n}{2}=-{{n}^{2}}+2n \\
& x-y=\pm \sqrt{-{{n}^{2}}+2n} \\
& {{x}^{4}}-{{y}^{4}}=\left( {{x}^{2}}+{{y}^{2}} \right)\left( x+y \right)\left( x-y \right)=\pm {{n}^{2}}\sqrt{-{{n}^{2}}+2n}=\pm \sqrt{-{{n}^{6}}+2{{n}^{5}}} \\
\end{align}\)
微分可知,\(n=\frac{5}{3}\)時,有最大值\(\frac{25}{27}\sqrt{5}\)