回復 22# satsuki931000 的帖子
\( \theta_{1} , \theta_{2} \)為兩解,\( \left\{ \begin{array}{l} \sqrt{2} \cos{ 2\theta_{1} } + \sqrt{3} \sin{ 2\theta_{1} } = 1 \\ \sqrt{2} \cos{ 2\theta_{2} } + \sqrt{3} \sin{ 2\theta_{2} } = 1 \end{array} \right. \)
兩式相減:\( \sqrt{2} \left( \cos{ 2\theta_{2} } - \cos{ 2\theta_{1} } \right) + \sqrt{3} \left( \sin{ 2\theta_{2} } - \sin{ 2\theta_{1} } \right) = 0 \)
和差化積:\( \sqrt{2} \left[ -2\sin{ (\theta_{2} + \theta_{1}) } \sin{ (\theta_{2} - \theta_{1}) } \right] + \sqrt{3} \left[ 2\cos{ (\theta_{2} + \theta_{1}) } \sin{ (\theta_{2} - \theta_{1}) } \right] = 0 \)
因為 \( -90^{\circ} < \theta_{1} < \theta_{2} < 90^{\circ} \),\( \sin{ (\theta_{2} - \theta_{1}) } \neq 0 \)
\( \Rightarrow \; -2\sqrt{2} \sin{ (\theta_{2} + \theta_{1}) } + 2\sqrt{3} \cos{ (\theta_{2} + \theta_{1}) } = 0 \)
\( \Rightarrow \; \tan{ (\theta_{2} + \theta_{1}) } = \frac{ 2\sqrt{3} }{ 2\sqrt{2} } = \frac{ \sqrt{6} }{2} \)。