回復 20# panda.xiong 的帖子
第 3 題:
\(n^3-1=\left(n^2+n+1\right)\left(n-1\right)\)
\(\Rightarrow n^3-1\equiv0\pmod{n^2+n+1}\)
\(\Rightarrow n^3\equiv1\pmod{n^2+n+1}\)
\(\Rightarrow n^{2010}\equiv1\pmod{n^2+n+1}\)
\(\Rightarrow n^{2010}+20\equiv21\pmod{n^2+n+1}\)
因為 \(n^2+n+1\Bigg|n^{2010}+20\),所以 \(n^2+n+1\Bigg|21\)
且因為 \(n\in\mathbb{N}\) ,所以 \(n^2+n+1=3,7,\) 或 \(21\)
可解得 \(n=1,2,\) 或 \(4\)