回復 26# ilikemath 的帖子
填 7.
\(OABC\)為一邊長為1的正四面體,\(D,E\)分別為\(\overline{AB},\overline{OC}\)中點。兩歪斜線\(\overline{OD}\)和\(\overline{BE}\)的距離為 。
[提示]
坐標化 \(\displaystyle O(0,0,0), A(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}), B(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), C(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)\),剩下的應該不難了。
填 12.
設\(\displaystyle F(x)=\int_0^1 \frac{t^x-1}{lnt}dt\),則\(\displaystyle \frac{d}{dx}F(x)=\) 。
[解答]
若 \( x>-1 \),則 \(\displaystyle t^{x}-1=\ln t\int_{0}^{x}t^{s}ds \), for \( t>0 \)
\(\displaystyle \Rightarrow F(x)=\int_{0}^{1}\int_{0}^{x}t^{s}dsdt=\int_{0}^{x}\int_{0}^{1}t^{s}dtds=\int_{0}^{x}\frac{1}{s+1}ds=\ln(x+1) \)。
故 \(\displaystyle \frac{d}{dx}F(x)=\frac{1}{x+1} \) 。