發新話題
打印

102建國中學

請教第12 題題意

12.
設\(\displaystyle F(x)=\int_0^1 \frac{t^x-1}{lnt}dt\),則\(\displaystyle \frac{d}{dx}F(x)=\)   

第12題是否想要考微積分基本定理,但是題目F(x)的定義看起來是常數,
或是小弟不才遺漏了積分函數中 t^z (z是否有特殊意義) 部分的涵義,請指教。

TOP

回復 21# basess8 的帖子

抱歉,是我的手誤打錯了,是 \( t^x \) 才正確,已修正之。

這題,可以是初微的積分技巧,也可以是高微以上(上至實分析) 裡,微分和積分可否交換順序的層次
網頁方程式編輯 imatheq

TOP

不好意思~各位老師
我想請問計算第2題
這題應該從哪個方向切入比較好?
謝謝各位老師了!!

TOP

計算第 2 題
應是寸絲老師筆誤了
要證的部分不會成立(例:正三角形ABC及以P為垂心)

TOP

回復 24# thepiano 的帖子

倒不是筆誤,而是寸絲記的題目就是那樣。

或許是記錯了吧?難怪一直做不出來

猜測,正確的命題應為 AP(BC-DE) >= BD PE + CE PD

不知道有沒有哪位,記得正確的題目,可以幫忙確認一下,謝謝!
網頁方程式編輯 imatheq

TOP

想請教填充7.11.12
感謝

TOP

回復 26# ilikemath 的帖子

填 7.
\(OABC\)為一邊長為1的正四面體,\(D,E\)分別為\(\overline{AB},\overline{OC}\)中點。兩歪斜線\(\overline{OD}\)和\(\overline{BE}\)的距離為   
[提示]
坐標化 \(\displaystyle O(0,0,0), A(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}), B(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), C(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)\),剩下的應該不難了。

填 12.
設\(\displaystyle F(x)=\int_0^1 \frac{t^x-1}{lnt}dt\),則\(\displaystyle \frac{d}{dx}F(x)=\)   
[解答]
若 \( x>-1 \),則 \(\displaystyle t^{x}-1=\ln t\int_{0}^{x}t^{s}ds \), for \( t>0 \)

\(\displaystyle \Rightarrow F(x)=\int_{0}^{1}\int_{0}^{x}t^{s}dsdt=\int_{0}^{x}\int_{0}^{1}t^{s}dtds=\int_{0}^{x}\frac{1}{s+1}ds=\ln(x+1) \)。

故 \(\displaystyle \frac{d}{dx}F(x)=\frac{1}{x+1} \) 。
網頁方程式編輯 imatheq

TOP

回復 6# ichiban 的帖子

我目前算到這
但是無法接下去
能否幫我看一下

附件

image.jpg (104.87 KB)

2013-4-30 20:31

image.jpg

TOP

填充題第九題的圖

[ 本帖最後由 shingjay176 於 2013-5-12 01:33 PM 編輯 ]

附件

1.png (10.51 KB)

2013-5-12 13:23

填充題第九題

1.png

TOP

回復 28# 王保丹 的帖子

最後一行好像應該這樣接:

\( x-\frac{1}{x-1}=0 \)

\(\frac{x^2-x-1}{x-1}=0 \)

所以正負號的分界點有 \(x=1,x=\frac{1+\sqrt{5}}{2}, x=\frac{1-\sqrt{5}}{2}\)
有錯煩請指正

TOP

發新話題