回復 20# waitpub 的帖子
設拋物線 \(y=ax^2+bx+c\) 與 \(x\) 軸兩交點為 \((x_1,0), (x_2,0)\)
則
\(\displaystyle \left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{-b}{a}\right)^2-\frac{c}{a}=\frac{b^2-4ac}{a^2}\)
或是可以如下,
\(\displaystyle \left(x_1-x_2\right)^2=\left(\frac{-b+\sqrt{b^2-4ac}}{2a}-\frac{-b-\sqrt{b^2-4ac}}{2a}\right)^2=\left(2\cdot\frac{\sqrt{b^2-4ac}}{2a}\right)^2=\frac{b^2-4ac}{a^2}\)